Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080519

RESUMO

Cross-linked polyethylene (XLPE) is one of the most popular insulation materials used in the production of medium and high voltage cables (MV, HV). This article presents the results of research carried out on two types of commercially used insulation materials, modified with the addition of organophilic phyllosilicate (CLOISITE C20A)and halloysite nanotubes (HNTs). The influence of fillers on the mechanical properties of insulating materials is discussed as a potential mechanism for increasing their resistance to the phenomenon of water-tree. SEM and XRD analyses were performed to investigate the morphology and DSC for comparing phase transitions. Mechanical and functional properties for different concentrations of nanofillers, such as their hybrids, were also investigated.

2.
Nanomaterials (Basel) ; 8(4)2018 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-29690551

RESUMO

In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures.

3.
Colloid Polym Sci ; 293(10): 2941-2947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412931

RESUMO

The research was planned to test electrical properties of polymer films made from polyurethane cationomers with 0-2 wt.% graphene admixture. The cationomers were synthetized in the reaction of 4,4'-methylenebis(phenyl isocyanate), polycaprolactone diol (M = 2000), N-methyldiethanolamine, and formic acid. It was found that addition of approx. 2 wt.% of graphene causes the loss of volume resistivity by three orders of magnitude and percolation threshold is already set at approx. 1 wt.%. The frequency characteristic of a real part of permittivity ε' and imaginary part of permittivity ε″ were measured for the tested films. On the base of Havriliak-Negami equation, parameters of relaxation functions in frequency domain were estimated for samples containing various contents of graphene. The influence of the cationomer phase structure on observed changes of dielectric losses coefficient tgδ in the full-measuring frequency spectrum was discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA