Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta ; 1863(12): 3084-3095, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27669113

RESUMO

A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different bacterial species have different endotoxic activity, the impact of LPS chemotype on the downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-tumoural activity in animal models of glioma, but the underlying molecular mechanisms are largely unknown. Thus, we investigated the impact of LPS chemotype on the signalling events in the human glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-ß-cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-κB activity without affecting IRF3. Our data may explain how TLR4 agonists differently affect glioma cell proliferation and migration.


Assuntos
Regulação Neoplásica da Expressão Gênica , Lipopolissacarídeos/farmacologia , Neuroglia/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Escherichia coli/química , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/isolamento & purificação , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Salmonella/química , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética , beta-Ciclodextrinas/farmacologia
2.
Mediators Inflamm ; 2017: 6209865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790798

RESUMO

Aberrant activation of the transcription factor NF-κB, as well as uncontrolled inflammation, has been linked to autoimmune diseases, development and progression of cancer, and neurological disorders like Alzheimer's disease. Reporter cell lines are a valuable state-of-the art tool for comparative analysis of in vitro drug screening. However, a reporter cell line for the investigation of NF-κB-driven neuroinflammation has not been available. Thus, we developed a stable neural NF-κB-reporter cell line to assess the potency of proinflammatory molecules and peptides, as well as anti-inflammatory pharmaceuticals. We used lentivirus to transduce the glioma cell line U251-MG with a tandem NF-κB reporter construct containing GFP and firefly luciferase allowing an assessment of NF-κB activity via fluorescence microscopy, flow cytometry, and luminometry. We observed a robust activation of NF-κB after exposure of the reporter cell line to tumour necrosis factor alpha (TNFα) and amyloid-ß peptide [1-42] as well as to LPS derived from Salmonella minnesota and Escherichia coli. Finally, we demonstrate that the U251-NF-κB-GFP-Luc reporter cells can be used for assessing the anti-inflammatory potential of pharmaceutical compounds using Bay11-7082 and IMD0354. In summary, our newly generated cell line is a robust and cost-efficient tool to study pro- and anti-inflammatory potential of drugs and biologics in neural cells.


Assuntos
Inflamação/metabolismo , NF-kappa B/metabolismo , Benzamidas/farmacologia , Linhagem Celular , Escherichia coli/imunologia , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Nitrilas/farmacologia , Salmonella/imunologia , Sulfonas/farmacologia
3.
Mediators Inflamm ; 2017: 9605894, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170605

RESUMO

Platelets are anucleated blood cells that participate in a wide range of physiological and pathological functions. Their major role is mediating haemostasis and thrombosis. In addition to these classic functions, platelets have emerged as important players in the innate immune system. In particular, they interact with leukocytes, secrete pro- and anti-inflammatory factors, and express a wide range of inflammatory receptors including Toll-like receptors (TLRs), for example, Toll-like receptor 4 (TLR4). TLR4, which is the most extensively studied TLR in nucleated cells, recognises lipopolysaccharides (LPS) that are compounds of the outer surface of Gram-negative bacteria. Unlike other TLRs, TLR4 is able to signal through both the MyD88-dependent and MyD88-independent signalling pathways. Notably, despite both pathways culminating in the activation of transcription factors, TLR4 has a prominent functional impact on platelet activity, haemostasis, and thrombosis. In this review, we summarise the current knowledge on TLR4 signalling in platelets, critically discuss its impact on platelet function, and highlight the open questions in this area.


Assuntos
Plaquetas/metabolismo , Trombose/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Hemostasia/fisiologia , Humanos , Transdução de Sinais/fisiologia
4.
J Transl Med ; 14: 34, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838370

RESUMO

Mesenchymal stromal cells (MSCs) are adult stem cells able to give rise to bone, cartilage and fat cells. In addition, they possess immunomodulatory and immunosuppressive properties that are mainly mediated through secretion of extracellular vesicles (EVs). In a previous issue of Journal of Translational Medicine, Ti and colleagues demonstrated that preconditioning of MSCs with bacterial lipopolysaccharides results in secretion of EVs that can polarise macrophages towards anti-inflammatory M2 phenotype. Moreover, the authors suggest that EVs of ​lipopolysaccharide (LPS)-treated MSCs are superior to EVs of untreated MSCs concerning their ability to support wound healing. Our commentary critically discusses parallel efforts of other laboratories to generate conditioned media from stem cells for therapeutic applications, and highlights impact and significance of the study of Ti et al. Finally, we summarise its limitations and spotlight areas that need to be addressed to better define the underlying molecular mechanisms.


Assuntos
Polaridade Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Receptor 4 Toll-Like/metabolismo , Polaridade Celular/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Cordão Umbilical/citologia
5.
Biochim Biophys Acta ; 1833(12): 2866-2878, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23872422

RESUMO

Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.


Assuntos
Núcleo Celular/metabolismo , Cicloexanóis/farmacologia , Monoterpenos/farmacologia , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicloexanóis/química , Eucaliptol , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Monoterpenos/química , Inibidor de NF-kappaB alfa , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Photodiagnosis Photodyn Ther ; 49: 104280, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002836

RESUMO

BACKGROUND: Acral actinic keratosis (AK) lesions are considered difficult to treat, and published data for photodynamic therapy (PDT) on these lesions is limited. Thus, we evaluated sustained efficacy, safety, and satisfaction after PDT for AK on the hands. METHODS: We analysed subgroup data for treatment on the hands from a randomised, double-blind, intra-individual phase III study. All participants previously underwent up to two field-directed red light PDTs with 10 % 5-aminolevulinic acid nanoemulsion gel (BF-200 ALA). Assessments included pain during PDT, clearance and recurrence rates, and satisfaction. RESULTS: 24 participants treated on the hands were included; 21 participants were analysed. Complete clearance rates with BF-200 ALA were 90.9 % (lesion-based) and 76.2 % (per participant's side), both markedly higher than with vehicle. The lesion recurrence rate with BF-200 ALA was 29.0 %. Adverse events reflected the mode of action. Mean pain intensities were 4.8 ± 3.8 (BF-200 ALA) and 0.8 ± 2.1 (vehicle) on an 11-point numeric rating scale. Most participants (81.0 %) rated their satisfaction with BF-200 ALA as very good or good. CONCLUSION: This subgroup analysis indicates that PDT with BF-200 ALA provides a suitable treatment for AK lesions on the hands.


Assuntos
Ácido Aminolevulínico , Ceratose Actínica , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fotoquimioterapia/métodos , Ácido Aminolevulínico/uso terapêutico , Ácido Aminolevulínico/análogos & derivados , Ceratose Actínica/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Feminino , Masculino , Método Duplo-Cego , Idoso , Pessoa de Meia-Idade , Satisfação do Paciente , Idoso de 80 Anos ou mais , Mãos
7.
Stem Cell Res Ther ; 10(1): 116, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953537

RESUMO

BACKGROUND: The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair. METHODS: Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source. RESULTS: Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome. CONCLUSIONS: Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.


Assuntos
Células-Tronco Mesenquimais/citologia , Músculo Esquelético/crescimento & desenvolvimento , Proteoma/genética , Regeneração/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Vesículas Extracelulares/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , MicroRNAs/genética , Músculo Esquelético/metabolismo , Proteínas/genética , Solubilidade
8.
Front Cell Dev Biol ; 6: 39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696142

RESUMO

Adult mammalian craniofacial tissues contain limited numbers of post-migratory neural crest-derived stem cells. Similar to their embryonic counterparts, these adult multipotent stem cells can undergo multi-lineage differentiation and are capable of contributing to regeneration of mesodermal and ectodermal cells and tissues in vivo. In the present study, we describe for the first time the presence of Nestin-positive neural crest-derived stem cells (NCSCs) within the ovine hard palate. We show that these cells can be isolated from the palatal tissue and are able to form neurospheres. Ovine NCSCs express the typical neural crest markers Slug and Twist, exhibit high proliferative and migratory activity and are able to differentiate into α smooth muscle cells and ß-III-tubulin expressing ectodermal cells. Finally, we demonstrate that oNCSCs are capable of differentiating into osteogenic, adipogenic and chondrogenic cells. Taken together, our results suggest that oNCSCs could be used as model cells to assess the efficacy and safety of autologous NCSC transplantation in a large animal model.

9.
Sci Signal ; 10(503)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089449

RESUMO

In humans, invading pathogens are recognized by Toll-like receptors (TLRs). Upon recognition of lipopolysaccharide (LPS) derived from the cell wall of Gram-negative bacteria, TLR4 dimerizes and can stimulate two different signaling pathways, the proinflammatory, MyD88-dependent pathway and the antiviral, MyD88-independent pathway. The balance between these two pathways is ligand-dependent, and ligand composition determines whether the invading pathogen activates or evades the host immune response. We investigated the dimerization behavior of TLR4 in intact cells in response to different LPS chemotypes through quantitative single-molecule localization microscopy. Quantitative superresolved data showed that TLR4 was monomeric in the absence of its co-receptors MD2 and CD14 in transfected HEK 293 cells. When TLR4 was present together with MD2 and CD14 but in the absence of LPS, 52% of the receptors were monomeric and 48% were dimeric. LPS from Escherichia coli or Salmonella minnesota caused the formation of dimeric TLR4 complexes, whereas the antagonistic LPS chemotype from Rhodobacter sphaeroides maintained TLR4 in monomeric form at the cell surface. Furthermore, we showed that LPS-dependent dimerization was required for the activation of NF-κB signaling. Together, these data demonstrate ligand-dependent dimerization of TLR4 in the cellular environment, which could pave the way for a molecular understanding of biased signaling downstream of the receptor.


Assuntos
Lipopolissacarídeos/imunologia , Multimerização Proteica , Imagem Individual de Molécula/métodos , Receptor 4 Toll-Like/metabolismo , Escherichia coli/imunologia , Células HEK293 , Humanos , Ligantes , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Salmonella/imunologia , Receptor 4 Toll-Like/genética , Transfecção
10.
Stem Cells Dev ; 26(18): 1316-1333, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28679310

RESUMO

The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Embrionárias/citologia , Vesículas Extracelulares/transplante , Músculo Esquelético/fisiologia , Neovascularização Fisiológica , Proteoma/metabolismo , Regeneração , Líquido Amniótico/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA