Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Circ Res ; 133(1): 6-21, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37232152

RESUMO

BACKGROUND: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial. We investigated whether endogenous DRP1 is essential in mediating the 2 forms of mitophagy during high-fat diet (HFD)-induced obesity cardiomyopathy and, if so, what the underlying mechanisms are. METHODS: Mice were fed either a normal diet or an HFD (60 kcal %fat). Mitophagy was evaluated using cardiac-specific Mito-Keima mice. The role of DRP1 was evaluated using tamoxifen-inducible cardiac-specific Drp1knockout (Drp1 MCM) mice. RESULTS: Mitophagy was increased after 3 weeks of HFD consumption. The induction of mitophagy by HFD consumption was completely abolished in Drp1 MCM mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. The increase in LC3 (microtubule-associated protein 1 light chain 3)-dependent general autophagy and colocalization between LC3 and mitochondrial proteins was abolished in Drp1 MCM mice. Activation of alternative mitophagy was also completely abolished in Drp1 MCM mice during the chronic phase of HFD consumption. DRP1 was phosphorylated at Ser616, localized at the mitochondria-associated membranes, and associated with Rab9 and Fis1 (fission protein 1) only during the chronic, but not acute, phase of HFD consumption. CONCLUSIONS: DRP1 is an essential factor in mitochondrial quality control during obesity cardiomyopathy that controls multiple forms of mitophagy. Although DRP1 regulates conventional mitophagy through a mitochondria-associated membrane-independent mechanism during the acute phase, it acts as a component of the mitophagy machinery at the mitochondria-associated membranes in alternative mitophagy during the chronic phase of HFD consumption.


Assuntos
Cardiomiopatias , Mitofagia , Animais , Camundongos , Autofagia/fisiologia , Cardiomiopatias/genética , Dinaminas/genética , Dinaminas/metabolismo , Coração , Dinâmica Mitocondrial , Mitofagia/fisiologia , Obesidade/genética
2.
J Mol Cell Cardiol ; 195: 83-96, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117176

RESUMO

Aging is a critical risk factor for heart disease, including ischemic heart disease and heart failure. Cellular senescence, characterized by DNA damage, resistance to apoptosis and the senescence-associated secretory phenotype (SASP), occurs in many cell types, including cardiomyocytes. Senescence precipitates the aging process in surrounding cells and the organ through paracrine mechanisms. Generalized autophagy, which degrades cytosolic materials in a non-selective manner, is decreased during aging in the heart. This decrease causes deterioration of cellular quality control mechanisms, facilitates aging and negatively affects lifespan in animals, including mice. Although suppression of generalized autophagy could promote senescence, it remains unclear whether the suppression of autophagy directly stimulates senescence in cardiomyocytes, which, in turn, promotes myocardial dysfunction in the heart. We addressed this question using mouse models with a loss of autophagy function. Suppression of general autophagy in cardiac-specific Atg7 knockout (Atg7cKO) mice caused accumulation of senescent cardiomyocytes. Induction of senescence via downregulation of Atg7 was also observed in chimeric Atg7 cardiac-specific KO mice and cultured cardiomyocytes in vitro, suggesting that the effect of autophagy suppression upon induction of senescence is cell autonomous. ABT-263, a senolytic agent, reduced the number of senescent myocytes and improved cardiac function in Atg7cKO mice. Suppression of autophagy and induction of senescence were also observed in doxorubicin-treated hearts, where reactivation of autophagy alleviated senescence in cardiomyocytes and cardiac dysfunction. These results suggest that suppression of general autophagy directly induces senescence in cardiomyocytes, which in turn promotes cardiac dysfunction.


Assuntos
Proteína 7 Relacionada à Autofagia , Autofagia , Senescência Celular , Camundongos Knockout , Miócitos Cardíacos , Animais , Autofagia/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Sulfonamidas/farmacologia , Doxorrubicina/farmacologia , Envelhecimento/metabolismo , Compostos de Anilina
3.
Biomacromolecules ; 25(2): 1319-1329, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291600

RESUMO

Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide, especially in aging and metabolically unhealthy populations. A major target of regenerative tissue engineering is the restoration of viable cardiomyocytes to preserve cardiac function and circumvent the progression to heart failure post-MI. Amelioration of ischemia is a crucial component of such restorative strategies. Angiogenic ß-sheet peptides can self-assemble into thixotropic nanofibrous hydrogels. These syringe aspiratable cytocompatible gels were loaded with stem cells and showed excellent cytocompatibility and minimal impact on the storage and loss moduli of hydrogels. Gels with and without cells were delivered into the myocardium of a mouse MI model (LAD ligation). Cardiac function and tissue remodeling were evaluated up to 4 weeks in vivo. Injectable peptide hydrogels synergized with loaded murine embryonic stem cells to demonstrate enhanced survival after intracardiac delivery during the acute phase post-MI, especially at 7 days. This approach shows promise for post-MI treatment and potentially functional cardiac tissue regeneration and warrants large-scale animal testing prior to clinical translation.


Assuntos
Hidrogéis , Infarto do Miocárdio , Camundongos , Animais , Hidrogéis/farmacologia , Infarto do Miocárdio/terapia , Miocárdio , Peptídeos/farmacologia , Células-Tronco Embrionárias
4.
J Mol Cell Cardiol ; 181: 1-14, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37235928

RESUMO

Inflammation is an integral component of cardiovascular disease and is thought to contribute to cardiac dysfunction and heart failure. While ischemia-induced inflammation has been extensively studied in the heart, relatively less is known regarding cardiac inflammation during non-ischemic stress. Recent work has implicated a role for Yes-associated protein (YAP) in modulating inflammation in response to ischemic injury; however, whether YAP influences inflammation in the heart during non-ischemic stress is not described. We hypothesized that YAP mediates a pro-inflammatory response during pressure overload (PO)-induced non-ischemic injury, and that targeted YAP inhibition in the myeloid compartment is cardioprotective. In mice, PO elicited myeloid YAP activation, and myeloid-specific YAP knockout mice (YAPF/F;LysMCre) subjected to PO stress had better systolic function, and attenuated pathological remodeling compared to control mice. Inflammatory indicators were also significantly attenuated, while pro-resolving genes including Vegfa were enhanced, in the myocardium, and in isolated macrophages, of myeloid YAP KO mice after PO. Experiments using bone marrow-derived macrophages (BMDMs) from YAP KO and control mice demonstrated that YAP suppression shifted polarization toward a resolving phenotype. We also observed attenuated NLRP3 inflammasome priming and function in YAP deficient BMDMs, as well as in myeloid YAP KO hearts following PO, indicating disruption of inflammasome induction. Finally, we leveraged nanoparticle-mediated delivery of the YAP inhibitor verteporfin and observed attenuated PO-induced pathological remodeling compared to DMSO nanoparticle control treatment. These data implicate myeloid YAP as an important molecular nodal point that facilitates cardiac inflammation and fibrosis during PO stress and suggest that selective inhibition of YAP may prove a novel therapeutic target in non-ischemic heart disease.


Assuntos
Inflamassomos , Remodelação Ventricular , Camundongos , Animais , Inflamassomos/metabolismo , Coração , Miocárdio/metabolismo , Inflamação/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
5.
Circ Res ; 129(12): 1105-1121, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34724805

RESUMO

RATIONALE: Obesity-associated cardiomyopathy characterized by hypertrophy and mitochondrial dysfunction. Mitochondrial quality control mechanisms, including mitophagy, are essential for the maintenance of cardiac function in obesity-associated cardiomyopathy. However, autophagic flux peaks at around 6 weeks of high-fat diet (HFD) consumption and declines thereafter. OBJECTIVE: We investigated whether mitophagy is activated during the chronic phase of cardiomyopathy associated with obesity (obesity cardiomyopathy) after general autophagy is downregulated and, if so, what the underlying mechanism and the functional significance are. METHODS AND RESULTS: Mice were fed either a normal diet or a HFD (60 kcal% fat). Mitophagy, evaluated using Mito-Keima, was increased after 3 weeks of HFD consumption and continued to increase after conventional mechanisms of autophagy were inactivated, at least until 24 weeks. HFD consumption time-dependently upregulated both Ser555-phosphorylated Ulk1 (unc-51 like kinase 1) and Rab9 (Ras-related protein Rab-9) in the mitochondrial fraction. Mitochondria were sequestrated by Rab9-positive ring-like structures in cardiomyocytes isolated from mice after 20 weeks of HFD consumption, consistent with the activation of alternative mitophagy. Increases in mitophagy induced by HFD consumption for 20 weeks were abolished in cardiac-specific ulk1 knockout mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. Rab9 S179A knock-in mice, in which alternative mitophagy is selectively suppressed, exhibited impaired mitophagy and more severe cardiac dysfunction than control mice following HFD consumption for 20 weeks. Overexpression of Rab9 in the heart increased mitophagy and protected against cardiac dysfunction during HFD consumption. HFD-induced activation of Rab9-dependent mitophagy was accompanied by upregulation of TFE3 (transcription factor binding to IGHM enhancer 3), which plays an essential role in transcriptional activation of mitophagy. CONCLUSIONS: Ulk1-Rab9-dependent alternative mitophagy is activated during the chronic phase of HFD consumption and serves as an essential mitochondrial quality control mechanism, thereby protecting the heart against obesity cardiomyopathy.


Assuntos
Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitofagia , Obesidade/complicações , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
Cell ; 133(6): 978-93, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18555775

RESUMO

Thioredoxin 1 (Trx1) facilitates the reduction of signaling molecules and transcription factors by cysteine thiol-disulfide exchange, thereby regulating cell growth and death. Here we studied the molecular mechanism by which Trx1 attenuates cardiac hypertrophy. Trx1 upregulates DnaJb5, a heat shock protein 40, and forms a multiple-protein complex with DnaJb5 and class II histone deacetylases (HDACs), master negative regulators of cardiac hypertrophy. Both Cys-274/Cys-276 in DnaJb5 and Cys-667/Cys-669 in HDAC4 are oxidized and form intramolecular disulfide bonds in response to reactive oxygen species (ROS)-generating hypertrophic stimuli, such as phenylephrine, whereas they are reduced by Trx1. Whereas reduction of Cys-274/Cys-276 in DnaJb5 is essential for interaction between DnaJb5 and HDAC4, reduction of Cys-667/Cys-669 in HDAC4 inhibits its nuclear export, independently of its phosphorylation status. Our study reveals a novel regulatory mechanism of cardiac hypertrophy through which the nucleocytoplasmic shuttling of class II HDACs is modulated by their redox modification in a Trx1-sensitive manner.


Assuntos
Cardiomegalia/metabolismo , Histona Desacetilases/metabolismo , Oxirredução , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Cisteína/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Histona Desacetilases/química , Camundongos , Dados de Sequência Molecular , Miócitos Cardíacos/metabolismo , Fosforilação , Alinhamento de Sequência , Tiorredoxinas/metabolismo
8.
Mol Cell ; 54(4): 639-50, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813943

RESUMO

The Hippo pathway, evolutionarily conserved from flies to mammals, promotes cell death and inhibits cell proliferation to regulate organ size. The core component of this cascade, Mst1 in mammalian cells, is sufficient to promote apoptosis. However, the mechanisms underlying both its activation and its ability to elicit cell death remain largely undefined. We here identify a signaling cassette in cardiac myocytes consisting of K-Ras, the scaffold RASSF1A, and Mst1 that is localized to mitochondria and promotes Mst1 activation in response to oxidative stress. Activated Mst1 phosphorylates Bcl-xL at Ser14, which resides in the BH4 domain, thereby antagonizing Bcl-xL-Bax binding. This, in turn, causes activation of Bax and subsequent mitochondria-mediated apoptotic death. Our findings demonstrate mitochondrial localization of Hippo signaling and identify Bcl-xL as a target that is directly modified to promote apoptosis.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína bcl-X/metabolismo , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular , Chlorocebus aethiops , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Fosforilação , Ratos , Ratos Wistar , Serina/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo , Proteínas ras/metabolismo
9.
Circ Res ; 124(9): 1360-1371, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30786833

RESUMO

RATIONALE: Diabetic patients develop cardiomyopathy characterized by hypertrophy, diastolic dysfunction, and intracellular lipid accumulation, termed lipotoxicity. Diabetic hearts utilize fatty acids as a major energy source, which produces high levels of oxidative stress, thereby inducing mitochondrial dysfunction. OBJECTIVE: To elucidate how mitochondrial function is regulated in diabetic cardiomyopathy. METHODS AND RESULTS: Mice were fed either a normal diet or high-fat diet (HFD, 60 kcal % fat). Although autophagic flux was activated by HFD consumption, peaking at 6 weeks ( P<0.05), it was attenuated thereafter. Mitophagy, evaluated with Mito-Keima, was increased after 3 weeks of HFD feeding (mitophagy area: 8.3% per cell with normal diet and 12.4% with HFD) and continued to increase even after 2 months ( P<0.05). By isolating adult cardiomyocytes from GFP-LC3 mice fed HFD, we confirmed that mitochondria were sequestrated by LC3-positive autophagosomes during mitophagy. In wild-type mice, cardiac hypertrophy, diastolic dysfunction (end diastolic pressure-volume relationship =0.051±0.009 in normal diet and 0.11±0.004 in HFD) and lipid accumulation occurred within 2 months of HFD feeding ( P<0.05). Deletion of atg7 impaired mitophagy, increased lipid accumulation, exacerbated diastolic dysfunction (end diastolic pressure-volume relationship =0.11±0.004 in wild type and 0.152±0.019 in atg7 cKO; P<0.05) and induced systolic dysfunction (end systolic pressure-volume relationship =24.86±2.46 in wild type and 15.93±1.76 in atg7 cKO; P<0.05) during HFD feeding. Deletion of Parkin partially inhibited mitophagy, increased lipid accumulation and exacerbated diastolic dysfunction (end diastolic pressure-volume relationship =0.124±0.005 in wild type and 0.176±0.018 in Parkin KO, P<0.05) in response to HFD feeding. Injection of TB1 (Tat-Beclin1) activated mitophagy, attenuated mitochondrial dysfunction, decreased lipid accumulation, and protected against cardiac diastolic dysfunction (end diastolic pressure-volume relationship =0.110±0.009 in Control peptide and 0.078±0.015 in TB1, P<0.05) during HFD feeding. CONCLUSIONS: Mitophagy serves as an essential quality control mechanism for mitochondria in the heart during HFD consumption. Impairment of mitophagy induces mitochondrial dysfunction and lipid accumulation, thereby exacerbating diabetic cardiomyopathy. Conversely, activation of mitophagy protects against HFD-induced diabetic cardiomyopathy.


Assuntos
Cardiomegalia/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Coração/fisiopatologia , Mitofagia , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo
10.
Circ Res ; 124(2): 292-305, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582455

RESUMO

RATIONALE: The Hippo pathway plays an important role in determining organ size through regulation of cell proliferation and apoptosis. Hippo inactivation and consequent activation of YAP (Yes-associated protein), a transcription cofactor, have been proposed as a strategy to promote myocardial regeneration after myocardial infarction. However, the long-term effects of Hippo deficiency on cardiac function under stress remain unknown. OBJECTIVE: We investigated the long-term effect of Hippo deficiency on cardiac function in the presence of pressure overload (PO). METHODS AND RESULTS: We used mice with cardiac-specific homozygous knockout of WW45 (WW45cKO), in which activation of Mst1 (Mammalian sterile 20-like 1) and Lats2 (large tumor suppressor kinase 2), the upstream kinases of the Hippo pathway, is effectively suppressed because of the absence of the scaffolding protein. We used male mice at 3 to 4 month of age in all animal experiments. We subjected WW45cKO mice to transverse aortic constriction for up to 12 weeks. WW45cKO mice exhibited higher levels of nuclear YAP in cardiomyocytes during PO. Unexpectedly, the progression of cardiac dysfunction induced by PO was exacerbated in WW45cKO mice, despite decreased apoptosis and activated cardiomyocyte cell cycle reentry. WW45cKO mice exhibited cardiomyocyte sarcomere disarray and upregulation of TEAD1 (transcriptional enhancer factor) target genes involved in cardiomyocyte dedifferentiation during PO. Genetic and pharmacological inactivation of the YAP-TEAD1 pathway reduced the PO-induced cardiac dysfunction in WW45cKO mice and attenuated cardiomyocyte dedifferentiation. Furthermore, the YAP-TEAD1 pathway upregulated OSM (oncostatin M) and OSM receptors, which played an essential role in mediating cardiomyocyte dedifferentiation. OSM also upregulated YAP and TEAD1 and promoted cardiomyocyte dedifferentiation, indicating the existence of a positive feedback mechanism consisting of YAP, TEAD1, and OSM. CONCLUSIONS: Although activation of YAP promotes cardiomyocyte regeneration after cardiac injury, it induces cardiomyocyte dedifferentiation and heart failure in the long-term in the presence of PO through activation of the YAP-TEAD1-OSM positive feedback mechanism.


Assuntos
Proteínas de Ciclo Celular/deficiência , Desdiferenciação Celular , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Ciclo Celular , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Via de Sinalização Hippo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Oncostatina M/metabolismo , Fosfoproteínas/metabolismo , Ratos Wistar , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Proteínas de Sinalização YAP
11.
J Biol Chem ; 294(35): 13131-13144, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311858

RESUMO

Inflammation is a central feature of cardiovascular disease, including myocardial infarction and heart failure. Reperfusion of the ischemic myocardium triggers a complex inflammatory response that can exacerbate injury and worsen heart function, as well as prevent myocardial rupture and mediate wound healing. Therefore, a more complete understanding of this process could contribute to interventions that properly balance inflammatory responses for improved outcomes. In this study, we leveraged several approaches, including global and regional ischemia/reperfusion (I/R), genetically modified mice, and primary cell culture, to investigate the cell type-specific function of the tumor suppressor Ras association domain family member 1 isoform A (RASSF1A) in cardiac inflammation. Our results revealed that genetic inhibition of RASSF1A in cardiomyocytes affords cardioprotection, whereas myeloid-specific deletion of RASSF1A exacerbates inflammation and injury caused by I/R in mice. Cell-based studies revealed that RASSF1A negatively regulates NF-κB and thereby attenuates inflammatory cytokine expression. These findings indicate that myeloid RASSF1A antagonizes I/R-induced myocardial inflammation and suggest that RASSF1A may be a promising target in immunomodulatory therapy for the management of acute heart injury.


Assuntos
Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Miocárdio/patologia , Células RAW 264.7 , Proteínas Supressoras de Tumor/deficiência
12.
J Biol Chem ; 294(10): 3603-3617, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30635403

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death globally, and heart failure is a major component of CVD-related morbidity and mortality. The development of cardiac hypertrophy in response to hemodynamic overload is initially considered to be beneficial; however, this adaptive response is limited and, in the presence of prolonged stress, will transition to heart failure. Yes-associated protein (YAP), the central downstream effector of the Hippo signaling pathway, regulates proliferation and survival in mammalian cells. Our previous work demonstrated that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired CM hypertrophy during chronic myocardial infarction (MI) in the mouse heart. Because of its documented cardioprotective effects, we sought to determine the importance of YAP in response to acute pressure overload (PO). Our results indicate that endogenous YAP is activated in the heart during acute PO. YAP activation that depended upon RhoA was also observed in CMs subjected to cyclic stretch. To examine the function of endogenous YAP during acute PO, Yap+/flox;Creα-MHC (YAP-CHKO) and Yap+/flox mice were subjected to transverse aortic constriction (TAC). We found that YAP-CHKO mice had attenuated cardiac hypertrophy and significant increases in CM apoptosis and fibrosis that correlated with worsened cardiac function after 1 week of TAC. Loss of CM YAP also impaired activation of the cardioprotective kinase Akt, which may underlie the YAP-CHKO phenotype. Together, these data indicate a prohypertrophic, prosurvival function of endogenous YAP and suggest a critical role for CM YAP in the adaptive response to acute PO.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/metabolismo , Fosfoproteínas/metabolismo , Pressão , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Cardiomegalia/etiologia , Cardiomegalia/patologia , Ciclo Celular , Proteínas de Ciclo Celular , Regulação para Baixo/genética , Fibrose , Técnicas de Inativação de Genes , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP/metabolismo
13.
J Mol Cell Cardiol ; 128: 38-50, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30625302

RESUMO

RATIONALE: LonP1 is an essential mitochondrial protease, which is crucial for maintaining mitochondrial proteostasis and mitigating cell stress. However, the importance of LonP1 during cardiac stress is largely unknown. OBJECTIVE: To determine the functions of LonP1 during ischemia/reperfusion (I/R) injury in vivo, and hypoxia-reoxygenation (H/R) stress in vitro. METHODS AND RESULTS: LonP1 was induced 2-fold in wild-type mice during cardiac ischemic preconditioning (IPC), which protected the heart against ischemia-reperfusion (I/R) injury. In contrast, haploinsufficiency of LonP1 (LONP1+/-) abrogated IPC-mediated cardioprotection. Furthermore, LONP1+/- mice showed significantly increased infarct size after I/R injury, whereas mice with 3-4 fold cardiac-specific overexpression of LonP1 (LonTg) had substantially smaller infarct size and reduced apoptosis compared to wild-type controls. To investigate the mechanisms underlying cardioprotection, LonTg mice were subjected to ischemia (45 min) followed by short intervals of reperfusion (10, 30, 120 min). During early reperfusion, the left ventricles of LonTg mice showed substantially reduced oxidative protein damage, maintained mitochondrial redox homeostasis, and showed a marked downregulation of both Complex I protein level and activity in contrast to NTg mice. Conversely, when LonP1 was knocked down in isolated neonatal rat ventricular myocytes (NRVMs), an up-regulation of Complex I subunits and electron transport chain (ETC) activities was observed, which was associated with increased superoxide production and reduced respiratory efficiency. The knockdown of LonP1 in NRVMs caused a striking dysmorphology of the mitochondrial inner membrane, mitochondrial hyperpolarization and increased hypoxia-reoxygenation (H/R)-activated apoptosis. Whereas, LonP1 overexpression blocked H/R-induced cell death. CONCLUSIONS: LonP1 is an endogenous mediator of cardioprotection. Our findings show that upregulation of LonP1 mitigates cardiac injury by preventing oxidative damage of proteins and lipids, preserving mitochondrial redox balance and reprogramming bioenergetics by reducing Complex I content and activity. Mechanisms that promote the upregulation of LonP1 could be beneficial in protecting the myocardium from cardiac stress and limiting I/R injury.


Assuntos
Proteases Dependentes de ATP/genética , Proteínas Mitocondriais/genética , Infarto do Miocárdio/genética , Estresse Oxidativo/genética , Traumatismo por Reperfusão/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica/genética , Precondicionamento Isquêmico Miocárdico , Lipídeos/genética , Camundongos , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Superóxidos/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 317(4): H711-H725, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347918

RESUMO

The heart requires high-energy production, but metabolic ability declines in the failing heart. Nicotinamide phosphoribosyl-transferase (Nampt) is a rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) synthesis. NAD is directly involved in various metabolic processes and may indirectly regulate metabolic gene expression through sirtuin 1 (Sirt1), an NAD-dependent protein deacetylase. However, how Nampt regulates cardiac function and metabolism in the failing heart is poorly understood. Here we show that pressure-overload (PO)-induced heart failure is exacerbated in both systemic Nampt heterozygous knockout (Nampt+/-) mice and mice with cardiac-specific Nampt overexpression (Tg-Nampt). The NAD level declined in Nampt+/- mice under PO (wild: 377 pmol/mg tissue; Nampt+/-: 119 pmol/mg tissue; P = 0.028). In cultured cardiomyocytes, Nampt knockdown diminished mitochondrial NAD content and ATP production (relative ATP production: wild: 1; Nampt knockdown: 0.56; P = 0.0068), suggesting that downregulation of Nampt induces mitochondrial dysfunction. On the other hand, the NAD level was increased in Tg-Nampt mice at baseline but not during PO, possibly due to increased consumption of NAD by Sirt1. The expression of Sirt1 was increased in Tg-Nampt mice, in association with reduced overall protein acetylation. PO-induced downregulation of metabolic genes was exacerbated in Tg-Nampt mice. In cultured cardiomyocytes, Nampt and Sirt1 cooperatively suppressed mitochondrial proteins and ATP production, thereby promoting mitochondrial dysfunction. In addition, Nampt overexpression upregulated inflammatory cytokines, including TNF-α and monocyte chemoattractant protein-1. Thus endogenous Nampt maintains cardiac function and metabolism in the failing heart, whereas Nampt overexpression is detrimental during PO, possibly due to excessive activation of Sirt1, suppression of mitochondrial function, and upregulation of proinflammatory mechanisms.NEW & NOTEWORTHY Nicotinamide phosphoribosyl-transferase (Nampt) is a rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide synthesis. We demonstrate that pressure overload-induced heart failure is exacerbated in both systemic Nampt heterozygous knockout mice and mice with cardiac-specific Nampt overexpression. Both loss- and gain-of-function models exhibited reduced protein acetylation, suppression of metabolic genes, and mitochondrial energetic dysfunction. Thus endogenous Nampt maintains cardiac function and metabolism in the failing heart, but cardiac-specific Nampt overexpression is detrimental rather than therapeutic.


Assuntos
Citocinas/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/enzimologia , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Nicotinamida Fosforribosiltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Células Cultivadas , Citocinas/deficiência , Citocinas/genética , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Ligadura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/deficiência , Nicotinamida Fosforribosiltransferase/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo
15.
Circ Res ; 121(10): 1182-1191, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28835357

RESUMO

RATIONALE: AMPK (AMP-activated protein kinase) is a heterotrimeric protein that plays an important role in energy homeostasis and cardioprotection. Two isoforms of each subunit are expressed in the heart, but the isoform-specific function of AMPK remains unclear. OBJECTIVE: We sought to determine the role of γ2-AMPK in cardiac stress response using bioengineered cell lines and mouse models containing either isoform of the γ-subunit in the heart. METHODS AND RESULTS: We found that γ2 but not γ1 or γ3 subunit translocated into nucleus on AMPK activation. Nuclear accumulation of AMPK complexes containing γ2-subunit phosphorylated and inactivated RNA Pol I (polymerase I)-associated transcription factor TIF-IA at Ser-635, precluding the assembly of transcription initiation complexes for rDNA. The subsequent downregulation of pre-rRNA level led to attenuated endoplasmic reticulum (ER) stress and cell death. Deleting γ2-AMPK led to increases in pre-rRNA level, ER stress markers, and cell death during glucose deprivation, which could be rescued by inhibition of rRNA processing or ER stress. To study the function of γ2-AMPK in the heart, we generated a mouse model with cardiac-specific deletion of γ2-AMPK (cardiac knockout [cKO]). Although the total AMPK activity was unaltered in cKO hearts because of upregulation of γ1-AMPK, the lack of γ2-AMPK sensitizes the heart to myocardial ischemia/reperfusion injury. The cKO failed to suppress pre-rRNA level during ischemia/reperfusion and showed a greater infarct size. Conversely, cardiac-specific overexpression of γ2-AMPK decreased ribosome biosynthesis and ER stress during ischemia/reperfusion insult, and the infarct size was reduced. CONCLUSIONS: The γ2-AMPK translocates into the nucleus to suppress pre-rRNA transcription and ribosome biosynthesis during stress, thus ameliorating ER stress and cell death. Increased γ2-AMPK activity is required to protect against ischemia/reperfusion injury. Our study reveals an isoform-specific function of γ2-AMPK in modulating ribosome biosynthesis, cell survival, and cardioprotection.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ribossomos/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Morte Celular/fisiologia , Chlorocebus aethiops , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Biossíntese de Proteínas/fisiologia
16.
J Biol Chem ; 292(46): 18988-19000, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28939765

RESUMO

Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death.


Assuntos
Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxinas/metabolismo , Animais , Morte Celular , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Fosforilação , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/metabolismo
17.
Circ Res ; 119(5): 596-606, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27402866

RESUMO

RATIONALE: NF2 (neurofibromin 2) is an established tumor suppressor that promotes apoptosis and inhibits growth in a variety of cell types, yet its function in cardiomyocytes remains largely unknown. OBJECTIVE: We sought to determine the role of NF2 in cardiomyocyte apoptosis and ischemia/reperfusion (I/R) injury in the heart. METHODS AND RESULTS: We investigated the function of NF2 in isolated cardiomyocytes and mouse myocardium at baseline and in response to oxidative stress. NF2 was activated in cardiomyocytes subjected to H2O2 and in murine hearts subjected to I/R. Increased NF2 expression promoted the activation of Mst1 (mammalian sterile 20-like kinase 1) and the inhibition of Yap (Yes-associated protein), whereas knockdown of NF2 attenuated these responses after oxidative stress. NF2 increased the apoptosis of cardiomyocytes that appeared dependent on Mst1 activity. Mice deficient for NF2 in cardiomyocytes, NF2 cardiomyocyte-specific knockout (CKO), were protected against global I/R ex vivo and showed improved cardiac functional recovery. Moreover, NF2 cardiomyocyte-specific knockout mice were protected against I/R injury in vivo and showed the upregulation of Yap target gene expression. Mechanistically, we observed nuclear association between NF2 and its activator MYPT-1 (myosin phosphatase target subunit 1) in cardiomyocytes, and a subpopulation of stress-induced nuclear Mst1 was diminished in NF2 CKO hearts. Finally, mice deficient for both NF2 and Yap failed to show protection against I/R indicating that Yap is an important target of NF2 in the adult heart. CONCLUSIONS: NF2 is activated by oxidative stress in cardiomyocytes and mouse myocardium and facilitates apoptosis. NF2 promotes I/R injury through the activation of Mst1 and inhibition of Yap, thereby regulating Hippo signaling in the adult heart.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Via de Sinalização Hippo , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Circulation ; 133(13): 1249-63, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26915633

RESUMO

BACKGROUND: Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. CONCLUSIONS: Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload.


Assuntos
Autofagia/fisiologia , Dinaminas/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Dinaminas/genética , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/patologia , Dados de Sequência Molecular , Pressão
19.
Circ Res ; 116(2): 264-78, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25332205

RESUMO

RATIONALE: Both fusion and fission contribute to mitochondrial quality control. How unopposed fusion affects survival of cardiomyocytes and left ventricular function in the heart is poorly understood. OBJECTIVE: We investigated the role of dynamin-related protein 1 (Drp1), a GTPase that mediates mitochondrial fission, in mediating mitochondrial autophagy, ventricular function, and stress resistance in the heart. METHODS AND RESULTS: Drp1 downregulation induced mitochondrial elongation, accumulation of damaged mitochondria, and increased apoptosis in cardiomyocytes at baseline. Drp1 downregulation also suppressed autophagosome formation and autophagic flux at baseline and in response to glucose deprivation in cardiomyocytes. The lack of lysosomal translocation of mitochondrially targeted Keima indicates that Drp1 downregulation suppressed mitochondrial autophagy. Mitochondrial elongation and accumulation of damaged mitochondria were also observed in tamoxifen-inducible cardiac-specific Drp1 knockout mice. After Drp1 downregulation, cardiac-specific Drp1 knockout mice developed left ventricular dysfunction, preceded by mitochondrial dysfunction, and died within 13 weeks. Autophagic flux is significantly suppressed in cardiac-specific Drp1 knockout mice. Although left ventricular function in cardiac-specific Drp1 heterozygous knockout mice was normal at 12 weeks of age, left ventricular function decreased more severely after 48 hours of fasting, and the infarct size/area at risk after ischemia/reperfusion was significantly greater in cardiac-specific Drp1 heterozygous knockout than in control mice. CONCLUSIONS: Disruption of Drp1 induces mitochondrial elongation, inhibits mitochondrial autophagy, and causes mitochondrial dysfunction, thereby promoting cardiac dysfunction and increased susceptibility to ischemia/reperfusion.


Assuntos
Autofagia/fisiologia , Dinaminas/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar
20.
Circ Res ; 117(10): 891-904, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26333362

RESUMO

RATIONALE: In Drosophila, the Hippo signaling pathway negatively regulates organ size by suppressing cell proliferation and survival through the inhibition of Yorkie, a transcriptional cofactor. Yes-associated protein (YAP), the mammalian homolog of Yorkie, promotes cardiomyocyte growth and survival in postnatal hearts. However, the underlying mechanism responsible for the beneficial effect of YAP in cardiomyocytes remains unclear. OBJECTIVES: We investigated whether miR-206, a microRNA known to promote hypertrophy in skeletal muscle, mediates the effect of YAP on promotion of survival and hypertrophy in cardiomyocytes. METHODS AND RESULTS: Microarray analysis indicated that YAP increased miR-206 expression in cardiomyocytes. Increased miR-206 expression induced cardiac hypertrophy and inhibited cell death in cultured cardiomyocytes, similar to that of YAP. Downregulation of endogenous miR-206 in cardiomyocytes attenuated YAP-induced cardiac hypertrophy and survival, suggesting that miR-206 plays a critical role in mediating YAP function. Cardiac-specific overexpression of miR-206 in mice induced hypertrophy and protected the heart from ischemia/reperfusion injury, whereas suppression of miR-206 exacerbated ischemia/reperfusion injury and prevented pressure overload-induced cardiac hypertrophy. miR-206 negatively regulates Forkhead box protein P1 expression in cardiomyocytes and overexpression of Forkhead box protein P1 attenuated miR-206-induced cardiac hypertrophy and survival, suggesting that Forkhead box protein P1 is a functional target of miR-206. CONCLUSIONS: YAP increases the abundance of miR-206, which in turn plays an essential role in mediating hypertrophy and survival by silencing Forkhead box protein P1 in cardiomyocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomegalia/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Proteínas de Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Camundongos Transgênicos , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Estresse Oxidativo , Fosfoproteínas/genética , Interferência de RNA , Ratos Wistar , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transfecção , Remodelação Ventricular , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA