Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 385: 129382, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352991

RESUMO

The remediation effects of living Chlorella sp. HL on zinc and manganese in swine wastewater was investigated, and the responses of algal cells and the mechanism were explored. In the wastewater with Zn(II) concentration of 1.85 mg/L and Mn(II) of 1 or 6 mg/L, the highest removal of Zn(II) by Chlorella reached 86.72% and 97.16%, respectively, and the Mn(II) removal were 42.74% and 30.33%, respectively. The antioxidant system of cells was activated by a significant increase in superoxide dismutase and catalase enzyme activities and a significant decrease in malondialdehyde in the mixed system compared to the single system. The presence of Mn(II) could positively regulate the differentially expressed genes related to catalytic activity and metabolic processes between the single Zn system and the mixed systems, reducing the stress of Zn(II) on Chlorella and more favorable to chlorophyll synthesis. The heavy metal-containing microalgal biomass obtained has the potential as feed additives.


Assuntos
Chlorella , Microalgas , Animais , Suínos , Zinco , Manganês , Águas Residuárias , Biodegradação Ambiental , Biomassa
2.
Sci Total Environ ; 807(Pt 3): 151008, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662604

RESUMO

Using microalgae to treat swine wastewater (SW) can achieve wastewater purification and biomass recovery at the same time. The algae species suitable for growth in SW were screened in this study, and the response surface combined with the desirability function method was used for multi-objective optimization to obtain high algal biomass and pollutant removal. Chlorophyll fluorescence parameters and biomass composition were analyzed to evaluate the cell physiological activity and its application potential. Chlorella sp. HL was selected as the most suitable species for growth in SW, and after 9 d of cultivation, the maximum specific growth rate and highest algal density were achieved 0.51 d-1 and 2.43 × 107 cells/mL, respectively. In addition, the removal of total phosphate and chemical oxygen demand were reached 69.13% and 72.95%, respectively. The optimum conditions for maximum algal density and highest pollutant removal were determined as the light intensity of 58.73 µmol/m2/s, inoculation density of 5.0 × 106 cells/mL, and a light/dark ratio of 3 using response surface model, and the predicted overall desirability value was 0.96. The potential maximum quantum yield of PSII (Fv/Fm) of Chlorella sp. HL in the early stage of cultivation was 0.60-0.70, while under high light and long photoperiod, the value of Fv/Fm and performance index of Chlorella decreased, trapped and dissipated energy flux per reaction center increased. The higher heating value of 18.25 MJ/kg indicated that the Chlorella cultivated in SW could be a good feedstock for biofuel production.


Assuntos
Chlorella , Microalgas , Animais , Biomassa , Pesquisa , Suínos , Águas Residuárias
3.
Bioresour Technol ; 358: 127402, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35667534

RESUMO

The effects of adjusting the nitrogen-phosphorus (N/P) ratio of wastewater and indigenous bacteria on swine wastewater treatment by Chlorella sp. HL were investigated. The optimal N/P ratio of Chlorella in swine wastewater was 20 by adjusting the phosphorus concentration. The participation of indigenous bacteria increased total extracellular polymeric substances content, which was beneficial to maintain the stability of the algal-bacterial consortium, and improved the algal density and the removal rate of total nitrogen, total phosphorus, and chemical oxygen demand by 47.8%, 24.0%, 30.7%, and 326.7%, respectively. Proteobacteria was the dominant phylum with the relative abundance of 71.58% in the algal-bacterial system at optimal N/P ratio, and Brevundimonas, Chryseobacterium, and Pseudomonas played positive roles in the establishment of symbiotic systems at the genus level. These results provide a theoretical basis for the construction of an efficient algal-bacterial symbiotic system in swine wastewater treatment and support for commercial scale-up.


Assuntos
Chlorella , Microalgas , Animais , Bactérias , Nitrogênio , Fósforo , Suínos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA