Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Biol Interact ; 328: 109196, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687844

RESUMO

Cancer metastasis and resistance for chemotherapeutic agent correlate with epithelial-mesenchymal transition (EMT), while ROS production also involves in the EMT process, However, how autophagy mediated ROS production affects EMT remains unclear. Previous study showed that DpdtC (2,2'-di-pyridylketone hydrazone dithiocarbamate) could induce ferritinophagy in HepG2 cell. To insight into more details that how ferritinophagy affects cellular feature, the SGC-7901and BGC-823 gastric cancer cell lines were used. Interestingly DpdtC treatment resulted in EMT inhibition and was ROS dependent. Similar situation occurred in TGF-ß1 induced EMT model, supporting that DpdtC was able to inhibit EMT. Next the ability of DpdtC in ferritinophagy induction was further evaluated. As expected, DpdtC induced ferritinophagy in the absence and presence of TGF-ß1. The correlation analysis revealed that an enhanced ferritinophagic flux contributed to the EMT inhibition. In addition, ferritinophagy triggers Fenton reaction, resulting in ROS production which give rise of p53 response, thus the role of p53 was further investigated. DpdtC treatment resulted in upregulation of p53, but, the addition of p53 inhibitor, PFT-α could significantly neutralize the action of DpdtC on ferritinophagy induction and EMT inhibition. Furthermore, autophagy inhibitors or NAC could counteract the action of DpdtC, indicating that ferrtinophagy-mediated ROS played an important role in the cellular events. In addition to upregulation of p53, its down-stream targets, AKT/mTor were also downregulated, supporting that DpdtC induced EMT inhibition was achieved through ferritinophagy-ROS vicious cycle mediated p53/AKT/mTor pathway. And the activation of ferritinophagic flux was the dominant driving force in action of DpdtC in gastric cancer cells.


Assuntos
Autofagia , Transição Epitelial-Mesenquimal , Ferritinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Ditiocarb/análogos & derivados , Ditiocarb/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
2.
Oxid Med Cell Longev ; 2019: 8753413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31320987

RESUMO

Epithelial-mesenchymal transition (EMT) contributes to metastasis and drug resistance; inhibition of EMT may attenuate metastasis and drug resistance. It has been demonstrated that ferritinophagy involves the process of many diseases; however, the relationship between EMT and ferritinophagy was not fully established. Some iron chelators show the ability to inhibit EMT, but whether ferritinophagy plays a role in EMT is largely unknown. To this end, we investigated the effect of a novel iron chelator, DpdtpA (2,2 '-di-pyridylketone dithiocarbamate propionic acid), on EMT in the CT26 cell line. The DpdtpA displayed excellent antitumor (IC50 = 1.5 ± 0.2 µM), leading to ROS production and apoptosis occurrence. Moreover, the ROS production correlated with ferritin degradation. The upregulation of LC3-II and NCOA4 from immunofluorescence and Western blotting analysis revealed that the occurrence of ferritinophagy contributed to ROS production. Furthermore, DpdtpA could induce an alteration both in morphology and in epithelial-mesenchymal markers, displaying significant EMT inhibition. The correlation analysis revealed that DpdtpA-induced ferritinophagy contributed to the EMT inhibition, implying that NCOA4 involved EMT process, which was firstly reported. To reinforce this concept, the ferritinophagic flux (NCOA4/ferritin) in either treated by TGF-ß1 or combined with DpdtpA was determined. The results indicated that activating ferritinophagic flux would enhance ROS production which accordingly suppressed EMT or implementing the EMT suppression seemed to be through "fighting fire with fire" strategy. Taken together, our data demonstrated that ferritinophagic flux was a dominating driving force in EMT proceeding, and the new finding definitely will enrich our knowledge of ferritinophagy in EMT process.


Assuntos
Ferritinas/metabolismo , Quelantes de Ferro/uso terapêutico , Transição Epitelial-Mesenquimal , Humanos , Quelantes de Ferro/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA