Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 72(15): 5673-5686, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33987653

RESUMO

Inoculation with pollution-degrading endophytes boosts the catabolism of residual contaminants and promotes the pollution adaptation of host plants. We investigated the interaction pattern between Sphingomonas strain HJY-rfp, a chlorpyrifos-degrading endophytic bacterium, and rice (Oryza sativa) under pesticide stress using hydroponic cultivation. We observed a notable trend of endophytic root colonization in rice plants treated with 10 mg l-1 chlorpyrifos solution, and after 24 h the migration of HJY-rfp enhanced the chlorpyrifos degradation rate in leaves and stems by 53.36% and 40.81%, respectively. Critically, the rice root exudate profile (organic acids and amino acids) changed under chlorpyrifos stress, and variations in the contents of several components affected the chemotactic behaviour of HJY-rfp. HJY-rfp colonization dramatically activated defensive enzymes, which enabled efficient scavenging of reactive oxygen species, and led to 9.8%, 22.5%, and 41.9% increases in shoot length, fresh weight, and accumulation of total chlorophyll, respectively, in rice suffering from oxidative damage by chlorpyrifos. Endophytic colonization caused up-regulation of detoxification genes that have shown a significant positive correlation with chlorpyrifos degradation in vivo. Collectively, our results demonstrate that agrochemical stress causes plants to actively recruit specific symbiotic microbes to detoxify contaminants and survive better under pollution conditions.


Assuntos
Clorpirifos , Oryza , Sphingomonas , Endófitos , Exsudatos e Transudatos , Raízes de Plantas
2.
Chemosphere ; 269: 128751, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33139042

RESUMO

Thiamethoxam (TMX) has been widely used over the last two decades. TMX residue in the environment has drawn great public attention. An endophytic bacterial strain, TMX-6, capable of degrading TMX was isolated from wild Ophiopogon japonicus and was identified as Enterobacter cloacae by morphology and 16S ribosomal DNA sequence analysis. After being marked with green fluorescent protein plasmid, TMX-6 was successfully inoculated in the rice plants (Oryza sativa L.). The numbers of TMX-6 in non-TMX treated rice plants ranged from 3.9 to 4.6 log CFU g-1 in the roots, and from 2.7 to 4.0 log CFU g-1 in the shoots; while ranged from 3.9 to 5.3 log CFU g-1 in roots and from 2.7 to 4.1 log CFU g-1 in shoots of TMX treated rice plants. Nearly 28%, 33%, 77% and 99% of TMX was removed from the hydroponic medium (HM), HM with strain TMX-6, HM with uninoculated rice and HM with inoculated rice, respectively, at the end of a 21-day (d) experiment period, and the correspondent half-lives of TMX were 46.2, 38.5, 9.9 and 4.7 d, respectively. Eleven TMX metabolites were identified in both inoculated and uninoculated rice plants through metabolomics data analysis. The intensity of TMX- NH, TMX-urea and clothianidin increased more than 3 times in inoculated rice plants on day 6. This demonstrates the usefulness of the strain TMX-6 to enhance the degradation of TMX-contaminated substrates and reduce levels of toxic insecticides in crop plants.


Assuntos
Inseticidas , Oryza , Bactérias , Enterobacter cloacae/genética , Raízes de Plantas , Tiametoxam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA