Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genomics ; 112(6): 4505-4515, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735916

RESUMO

Temporal transcriptome analysis combined with targeted metabolomics was employed to investigate the mechanisms of high sugar accumulation in fruit pulp of two contrasting mango cultivars. Ten sugar metabolites were identified in mango pulp with the most dominant being d-glucose. Analysis of the gene expression patterns revealed that the high-sugar cultivar prioritized the conversion of sucrose to d-glucose by up-regulating invertases and ß-glucosidases and increased other genes directly contributing to the synthesis of sucrose and d-glucose. In contrast, it repressed the expression of genes converting sucrose, d-glucose and other sugars into intermediates compounds for downstream processes. It also strongly increased the expression of alpha-amylases which may promote high degradation of starch into d-glucose. Besides, ¾ of the sugar transporters was strongly up-regulated, indicative of their preponderant role in sugar accumulation in mango fruit. Overall, this study provides a good insight into the regulation pattern of high sugar accumulation in mango pulp.


Assuntos
Regulação da Expressão Gênica de Plantas , Mangifera/genética , Mangifera/metabolismo , Açúcares/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq , Amido/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Arch Microbiol ; 200(5): 835-840, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29666886

RESUMO

A newly isolated strain XC01 was identified as Xanthomonas citri pv. mangiferaeindicae, isolated from an infected mango fruit in Guangxi, China. The complete genome sequence of XC01 was carried out using the PacBio RSII platform. The genome contains a circular chromosome with 3,865,165 bp, 3442 protein-coding genes, 53 tRNAs, and 2 rRNA operons. Phylogenetic analysis revealed that this pathogen is very close to the soybeans bacterial pustule pathogen X. citri pv. glycines CFBP 2526, with a completely different host range. The genome sequence of XC01 may shed a highlight genes with a demonstrated or proposed role in on the pathogenesis.


Assuntos
Genoma Bacteriano , Xanthomonas/genética , Proteínas de Bactérias/genética , Sequência de Bases , Especificidade de Hospedeiro , Mangifera/microbiologia , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , RNA Bacteriano/genética , Virulência/genética , Sequenciamento Completo do Genoma
3.
Front Microbiol ; 14: 1220101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469435

RESUMO

Mango is an important tropical fruit with the reputation of "Tropical Fruit King." It is widely cultivated in tropical and subtropical regions. Mango bacterial leaf spot, which is caused by Xanthomonas critis pv. mangiferaeindicae (Xcm), poses a great threat to the development of mango planting industry. In this study, we used RNA sequencing and data-independent acquisition techniques to compare the transcriptome and proteome of the highly resistant cultivar "Renong No.1" (RN) and the highly susceptible cultivar "Keitt" (KT) in response to Xcm infection at different stages (0, 2, and 6 days). A total of 14,397 differentially expressed genes (DEGs) were identified in the transcriptome of the two varieties, and 4,400 and 8,926 genes were differentially expressed in RN and KT, respectively. Among them, 217 DEGs were related to plant hormone signaling pathway, and 202 were involved in the maintenance of cellular redox homeostasis. A total of 3,438 differentially expressed proteins (DEPs) were identified in the proteome of the two varieties. Exactly 1,542 and 1,700 DEPs were detected in RN and KT, respectively. In addition, 39 DEPs were related to plant hormone signaling pathway, whereas 68 were involved in the maintenance of cellular redox homeostasis. Through cross-validation of the two omics, 1,470 genes were found to be expressed in both groups, and a large number of glutathione metabolism-related genes, such as HSP26-A, G6PD4, and GPX2, were up-regulated in both omics. Peroxisome-related genes, such as LACS6, LACS9, PED1, GLO4, and HACL, were up-regulated or down-regulated in both omics. ABCB11, SAPK2, MYC2, TAG7, PYL1, and other genes related to indole-3-acetic acid and abscisic acid signal transduction and plant-pathogen interaction were up-regulated or down-regulated in both omics. We also used weighted gene co-expression network analysis to combine physiological and biochemical data (superoxide dismutase and catalase activity changes) with transcriptome and proteome data and finally identified three hub genes/proteins (SAG113, SRK2A, and ABCB1) that play an important role in plant hormone signal transduction. This work was the first study of gene/protein changes in resistant and susceptible mango varieties, and its results improved our understanding of the molecular mechanism of mango resistance to Xcm.

4.
Front Plant Sci ; 14: 1124351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215287

RESUMO

Environmental stresses are ubiquitous in agricultural cultivation, and they affect the healthy growth and development of edible tissues in passion fruit. The study of resistance mechanisms is important in understanding the adaptation and resistance of plants to environmental stresses. In this work, two differently resistant passion fruit varieties were selected, using the expression characteristics of the transcription factor MYB, to explore the resistance mechanism of the MYB gene under various environmental stresses. A total of 174 MYB family members were identified using high-quality passion fruit genomes: 98 2R-MYB, 5 3R-MYB, and 71 1R-MYB (MYB-relate). Their family information was systematically analyzed, including subcellular localization, physicochemical properties, phylogeny at the genomic level, promoter function, encoded proteins, and reciprocal regulation. In this study, bioinformatics and transcriptome sequencing were used to identify members of the PeMYB genes in passion fruit whole-genome data, and biological techniques, such as qPCR, gene clone, and transient transformation of yeast, were used to determine the function of the passion fruit MYB genes in abiotic stress tolerance. Transcriptomic data were obtained for differential expression characteristics of two resistant and susceptible varieties, three expression patterns during pulp development, and four induced expression patterns under abiotic stress conditions. We further focused on the resistance mechanism of PeMYB87 in environmental stress, and we selected 10 representative PeMYB genes for quantitative expression verification. Most of the genes were differentially induced by four abiotic stresses, among which PeMYB87 responded significantly to high-temperature-induced expression and overexpression of the PeMYB87 gene in the yeast system. The transgenic PeMYB87 in yeast showed different degrees of stress resistance under exposure to cold, high temperatures, drought, and salt stresses. These findings lay the foundation for further analysis of the biological functions of PeMYBs involved in stress resistance in passion fruit.

5.
PLoS One ; 12(12): e0187487, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211747

RESUMO

Aroma is important in assessing the quality of fresh fruit and their processed products, and could provide good indicators for the development of local cultivars in the mango industry. In this study, the volatile diversity of 25 mango cultivars from China, America, Thailand, India, Cuba, Indonesia, and the Philippines was investigated. The volatile compositions, their relative contents, and the intervarietal differences were detected with headspace solid phase microextraction tandem gas chromatography-mass spectrometer methods. The similarities were also evaluated with a cluster analysis and correlation analysis of the volatiles. The differences in mango volatiles in different districts are also discussed. Our results show significant differences in the volatile compositions and their relative contents among the individual cultivars and regions. In total, 127 volatiles were found in all the cultivars, belonging to various chemical classes. The highest and lowest qualitative abundances of volatiles were detected in 'Zihua' and 'Mallika' cultivars, respectively. Based on the cumulative occurrence of members of the classes of volatiles, the cultivars were grouped into monoterpenes (16 cultivars), proportion and balanced (eight cultivars), and nonterpene groups (one cultivars). Terpene hydrocarbons were the major volatiles in these cultivars, with terpinolene, 3-carene, caryophyllene and α-Pinene the dominant components depending on the cultivars. Monoterpenes, some of the primary volatile components, were the most abundant aroma compounds, whereas aldehydes were the least abundant in the mango pulp. ß-Myrcene, a major terpene, accounted for 58.93% of the total flavor volatile compounds in 'Xiaofei' (Philippens). γ-Octanoic lactone was the only ester in the total flavor volatile compounds, with its highest concentration in 'Guiya' (China). Hexamethyl cyclotrisiloxane was the most abundant volatile compound in 'Magovar' (India), accounting for 46.66% of the total flavor volatiles. A typical aldehydic aroma 2,6-di-tert-butyl-4-sec-butylphenol, was detected in 'Gleck'. A highly significant positive correlation was detected between Alc and K, Alk and Nt, O and L. Cultivars originating from America, Thailand, Cuba, India, Indonesia and the Philippines were more similar to each other than to those from China. This study provides a high-value dataset for use in development of health care products, diversified mango breeding, and local extension of mango cultivars.


Assuntos
Mangifera/química , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
6.
Front Microbiol ; 7: 1443, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683574

RESUMO

Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes.

7.
Wei Sheng Wu Xue Bao ; 44(6): 827-9, 2004 Dec.
Artigo em Zh | MEDLINE | ID: mdl-16110970

RESUMO

The total DNA isolated from MBC-resistant and MBC-sensitive isolates of Colletotrichum gloeosporioides Penz (C.g.M) of mango were used as templates in PCR amplification using consensus oligo nucleotide primers designed according to the known sequence data of beta-tubulin-encoding gene (tub 1 and tub2) of Colletotrichum gloeosporioides f. sp. aeschynomene (C. g. A). Only the primers designed according to C. g. A tub2 amplified specific fragments. These amplified fragments were cloned and sequenced. The results showed that these fragments have 1344bp and deduced 447 amino acid, which were highly homologous to C.g.A tub2. MBC-resistant isolates did not carry the allelic mutation at amino acid codes 198 and 200 of beta-tubulin gene in comparison with the sensitive isolates. However, the amino acid altered in codes 181, 237 and 363.


Assuntos
Benzimidazóis/farmacologia , Carbamatos/farmacologia , Colletotrichum/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Tubulina (Proteína)/genética , Clonagem Molecular , Colletotrichum/genética , Farmacorresistência Fúngica , Mutação Puntual , Reação em Cadeia da Polimerase
8.
J Proteomics ; 105: 19-30, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24704857

RESUMO

Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. BIOLOGICAL SIGNIFICANCE: Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Assuntos
Frutas , Mangifera , Proteínas de Plantas , Proteoma , RNA de Plantas , Transcriptoma/fisiologia , Frutas/genética , Frutas/metabolismo , Mangifera/genética , Mangifera/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteoma/biossíntese , Proteoma/genética , Proteômica/métodos , RNA de Plantas/biossíntese , RNA de Plantas/genética , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA