Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant J ; 103(1): 95-110, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31999384

RESUMO

Taxus stem barks can be used for extraction of paclitaxel. However, the composition of taxoids across the whole stem and the stem tissue-specificity of paclitaxel biosynthesis-related enzymes remain largely unknown. We used cultivated Taxus media trees for analyses of the chemical composition and protein of major stem tissues by an integrated metabolomic and proteomic approach, and the role of TmMYB3 in paclitaxel biosynthesis was investigated. The metabolomic landscape analysis showed differences in stem tissue-specific accumulation of metabolites. Phytochemical analysis revealed that there is high accumulation of paclitaxel in the phloem. Ten key enzymes involved in paclitaxel biosynthesis were identified, most of which are predominantly produced in the phloem. The full-length sequence of TmMYB3 and partial promoter sequences of five paclitaxel biosynthesis-related genes were isolated. Several MYB recognition elements were found in the promoters of TBT, DBTNBT and TS. Further in vitro and in vivo investigations indicated that TmMYB3 is involved in paclitaxel biosynthesis by activating the expression of TBT and TS. Differences in the taxoid composition of different stem tissues suggest that the whole stem of T. media has potential for biotechnological applications. Phloem-specific TmMYB3 plays a role in the transcriptional regulation of paclitaxel biosynthesis, and may explain the phloem-specific accumulation of paclitaxel.


Assuntos
Paclitaxel/biossíntese , Floema/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Taxus/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Redes e Vias Metabólicas , Metabolômica , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas , Proteômica , Fatores de Transcrição/fisiologia
2.
Plant Mol Biol ; 103(3): 341-354, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227258

RESUMO

KEY MESSAGE: We employed both metabolomic and transcriptomic approaches to explore the accumulation patterns of physalins, flavonoids and chlorogenic acid in Physalis angulata and revealed the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Physalis angulata L. is an annual Solanaceae plant with a number of medicinally active compounds. Despite the potential pharmacological benefits of P. angulata, the scarce genomic information regarding this plant has limited the studies on the mechanisms of bioactive compound biosynthesis. To facilitate the basic understanding of the main chemical constituent biosynthesis pathways, we performed both metabolomic and transcriptomic approaches to reveal the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Untargeted metabolome analysis showed that most physalins, flavonoids and chlorogenic acid were significantly upregulated. Targeted HPLC-MS/MS analysis confirmed variations in the contents of two important representative steroid derivatives (physalins B and G), total flavonoids, neochlorogenic acid, and chlorogenic acid between MeJA-treated plants and controls. Transcript levels of a few steroid biosynthesis-, flavonoid biosynthesis-, and chlorogenic acid biosynthesis-related genes were upregulated, providing a potential explanation for MeJA-induced active ingredient synthesis in P. angulata. Systematic correlation analysis identified a number of novel candidate genes associated with bioactive compound biosynthesis. These results may help to elucidate the regulatory mechanism underlying MeJA-induced active compound accumulation and provide several valuable candidate genes for further functional study.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Physalis/efeitos dos fármacos , Physalis/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Metaboloma , Estrutura Molecular , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Transcriptoma
3.
BMC Plant Biol ; 20(1): 242, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466748

RESUMO

BACKGROUND: Physalis L. is a genus of herbaceous plants of the family Solanaceae, which has important medicinal, edible, and ornamental values. The morphological characteristics of Physalis species are similar, and it is difficult to rapidly and accurately distinguish them based only on morphological characteristics. At present, the species classification and phylogeny of Physalis are still controversial. In this study, the complete chloroplast (cp) genomes of four Physalis species (Physalis angulata, P. alkekengi var. franchetii, P. minima and P. pubescens) were sequenced, and the first comprehensive cp genome analysis of Physalis was performed, which included the previously published cp genome sequence of Physalis peruviana. RESULTS: The Physalis cp genomes exhibited typical quadripartite and circular structures, and were relatively conserved in their structure and gene synteny. However, the Physalis cp genomes showed obvious variations at four regional boundaries, especially those of the inverted repeat and the large single-copy regions. The cp genomes' lengths ranged from 156,578 bp to 157,007 bp. A total of 114 different genes, 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, were observed in four new sequenced Physalis cp genomes. Differences in repeat sequences and simple sequence repeats were detected among the Physalis cp genomes. Phylogenetic relationships among 36 species of 11 genera of Solanaceae based on their cp genomes placed Physalis in the middle and upper part of the phylogenetic tree, with a monophyletic evolution having a 100% bootstrap value. CONCLUSION: Our results enrich the data on the cp genomes of the genus Physalis. The availability of these cp genomes will provide abundant information for further species identification, increase the taxonomic and phylogenetic resolution of Physalis, and assist in the investigation and utilization of Physalis plants.


Assuntos
Genoma de Cloroplastos/genética , Physalis/genética , Genoma de Planta/genética , Repetições de Microssatélites/genética , Filogenia , Análise de Sequência de DNA
4.
BMC Plant Biol ; 18(1): 197, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223770

RESUMO

BACKGROUND: Plants of the genus Taxus have attracted much attention owing to the natural product taxol, a successful anti-cancer drug. T. fuana and T. yunnanensis are two endangered Taxus species mainly distributed in the Himalayas. In our study, an untargeted metabolomics approach integrated with a targeted UPLC-MS/MS method was applied to examine the metabolic variations between these two Taxus species growing in different environments. RESULTS: The level of taxol in T. yunnanensis is much higher than that in T. fuana, indicating a higher economic value of T. yunnanensis for taxol production. A series of specific metabolites, including precursors, intermediates, competitors of taxol, were identified. All the identified intermediates are predominantly accumulated in T. yunnanensis than T. fuana, giving a reasonable explanation for the higher accumulation of taxol in T. yunnanensis. Taxusin and its analogues are highly accumulated in T. fuana, which may consume limited intermediates and block the metabolic flow towards taxol. The contents of total flavonoids and a majority of tested individual flavonoids are significantly accumulated in T. fuana than T. yunnanensis, indicating a stronger environmental adaptiveness of T. fuana. CONCLUSIONS: Systemic metabolic profiling may provide valuable information for the comprehensive industrial utilization of the germplasm resources of these two endangered Taxus species growing in different environments.


Assuntos
Metabolômica/métodos , Taxus/metabolismo , Espécies em Perigo de Extinção , Flavonoides/metabolismo , Paclitaxel/metabolismo , Metabolismo Secundário , Taxoides/análise , Taxoides/metabolismo , Tibet
5.
Zhongguo Zhong Yao Za Zhi ; 40(7): 1271-3, 2015 Apr.
Artigo em Zh | MEDLINE | ID: mdl-26281544

RESUMO

Astragalus adsurgens seed is one of the most common adulterants of Astragali Complanati Semen in the market, whose morphological characteristics are very similar with A. complanatus seeds (Astragali Complanati Semen). Many identification methods have been reported, such as morphological identification, fluorescence method, ultraviolet spectrophotometry, TLC, HPLC, protein electrophoresis and so on, but there's no much about microscopic identification. In the present study, the morphological characteristics and microscopic characteristics of these two seeds were investigated, which could provide scientific evidence for the identification and classification of Astragali Complanati Semen. Our results showed that these two seeds were slightly different in the color and the appearance, but significantly different in the microstructure of the seed coat and the hilum, and the distribution of fat droplets in the cotyledon cells. So these microscopic characteristics can be applied for the identification of Astragali Complanati Semen.


Assuntos
Astrágalo/anatomia & histologia , Microscopia/métodos , Sementes/anatomia & histologia , Astrágalo/química , Cor , Análise Discriminante , Controle de Qualidade , Sementes/química
6.
Zhongguo Zhong Yao Za Zhi ; 39(23): 4580-2, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-25911805

RESUMO

Akebia trifoliate has been reported to have many pharmacological activities and the roots, petioles and seeds are used to different symptoms. However, the structure and anatomy of its seeds was almost not reported until now. In the present study, we investigated the morphological characters of the fruit and seed, and the anatomical characters of the testa, micropyle, embryo and endosperm, which could provide evidences for the study on classification, identification and application of A. trifoliate. Our results showed that the testa of A. trifoliate consisted of an epidermic cell layer, the sclerenchyma cells layer, the parenchyma cells layer and an innermost pigment layer. At the micropylar region, the outermost epidermal cells were specialized the white caruncle-like structure and the testa included a lot of lignified tissues. Endosperm comprises two layer cells. Outermost yellowish-brown layer cells contains lots of fat droplets, and innermost white layer cells contains lots of aleurone grains and crystalloids.


Assuntos
Magnoliopsida/anatomia & histologia , Sementes/anatomia & histologia , Germinação , Magnoliopsida/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
7.
ACS Omega ; 9(16): 18634-18642, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680336

RESUMO

BACKGROUND: Taxus cuspidata is an endangered evergreen conifer mainly found in Northeast Asia. In addition to the well-known taxanes, several active ingredients were detected in the leaves of T. cuspidata. However, the precise spatial distribution of active ingredients in the leaves of T. cuspidata is largely unknown. RESULTS: in the present study, timsTOF flex MALDI-2 analysis was used to uncover the accumulation pattern of active ingredients in T. cuspidata leaves. In total, 3084 ion features were obtained, of which 944 were annotated according to the mass spectrometry database. The principal component analysis separated all of the detected metabolites into four typical leaf tissues: mesophyll cells, upper epidermis, lower epidermis, and vascular bundle cells. Imaging analysis identified several leaf tissues that specifically accumulated active ingredients, providing theoretical support for studying the regulation mechanism of compound biosynthesis. Furthermore, the relative accumulation levels of each identified compound were analyzed. Two flavonoid compounds, ligustroflavone and Morin, were identified with high content through quantitative analysis of the ion intensity. CONCLUSIONS: our data provides fundamental information for the protective utilization of T. cuspidata.

8.
Microbiome ; 12(1): 165, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244575

RESUMO

BACKGROUND: To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation. RESULTS: Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1. CONCLUSION: These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract.


Assuntos
Metabolismo Secundário , Taxus , Raios Ultravioleta , Taxus/microbiologia , Endófitos/genética , Endófitos/metabolismo , Fungos/genética , Fungos/classificação , Fungos/efeitos da radiação , Fungos/metabolismo , Microbiota
9.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176816

RESUMO

Cutleaf groundcherry (Physalis angulata L.), an annual plant containing a variety of active ingredients, has great medicinal value. However, studies on the genetic diversity and population structure of P. angulata are limited. In this study, we developed chloroplast microsatellite (cpSSR) markers and applied them to evaluate the genetic diversity and population structure of P. angulata. A total of 57 cpSSRs were identified from the chloroplast genome of P. angulata. Among all cpSSR loci, mononucleotide markers were the most abundant (68.24%), followed by tetranucleotide (12.28%), dinucleotide (10.53%), and trinucleotide (8.77%) markers. In total, 30 newly developed cpSSR markers with rich polymorphism and good stability were selected for further genetic diversity and population structure analyses. These cpSSRs amplified a total of 156 alleles, 132 (84.62%) of which were polymorphic. The percentage of polymorphic alleles and the average polymorphic information content (PIC) value of the cpSSRs were 81.29% and 0.830, respectively. Population genetic diversity analysis indicated that the average observed number of alleles (Na), number of effective alleles (He), Nei's gene diversity (h), and Shannon information indices (I) of 16 P. angulata populations were 1.3161, 1.1754, 0.1023, and 0.1538, respectively. Moreover, unweighted group arithmetic mean, neighbor-joining, principal coordinate, and STRUCTURE analyses indicated that 203 P. angulata individuals from 16 populations were grouped into four clusters. A molecular variance analysis (AMOVA) illustrated the considerable genetic variation among populations, while the gene flow (Nm) value (0.2324) indicated a low level of gene flow among populations. Our study not only provided a batch of efficient genetic markers for research on P. angulata but also laid an important foundation for the protection and genetic breeding of P. angulata resources.

10.
Plants (Basel) ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005778

RESUMO

Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and difficult to store for a long time. However, few data are available on the mechanism of the desiccation sensitivity of P. notoginseng seeds. To gain a comprehensive perspective of the genes associated with desiccation sensitivity, cDNA libraries from seeds under control and desiccation processes were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. In total, 12,025 differentially expressed genes (DEGs) were identified during the desiccation process. Among these DEGs, a number of central metabolism, hormonal network-, fatty acid-, and ascorbate-glutathione-related genes were included. Our data provide a comprehensive resource for identifying the genes associated with the desiccation sensitivity of P. notoginseng seeds.

11.
Plant Commun ; 4(5): 100630, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37231648

RESUMO

Taxus leaves provide the raw industrial materials for taxol, a natural antineoplastic drug widely used in the treatment of various cancers. However, the precise distribution, biosynthesis, and transcriptional regulation of taxoids and other active components in Taxus leaves remain unknown. Matrix-assisted laser desorption/ionization-mass spectrometry imaging analysis was used to visualize various secondary metabolites in leaf sections of Taxus mairei, confirming the tissue-specific accumulation of different active metabolites. Single-cell sequencing was used to produce expression profiles of 8846 cells, with a median of 2352 genes per cell. Based on a series of cluster-specific markers, cells were grouped into 15 clusters, suggesting a high degree of cell heterogeneity in T. mairei leaves. Our data were used to create the first Taxus leaf metabolic single-cell atlas and to reveal spatial and temporal expression patterns of several secondary metabolic pathways. According to the cell-type annotation, most taxol biosynthesis genes are expressed mainly in leaf mesophyll cells; phenolic acid and flavonoid biosynthesis genes are highly expressed in leaf epidermal cells (including the stomatal complex and guard cells); and terpenoid and steroid biosynthesis genes are expressed specifically in leaf mesophyll cells. A number of novel and cell-specific transcription factors involved in secondary metabolite biosynthesis were identified, including MYB17, WRKY12, WRKY31, ERF13, GT_2, and bHLH46. Our research establishes the transcriptional landscape of major cell types in T. mairei leaves at a single-cell resolution and provides valuable resources for studying the basic principles of cell-type-specific regulation of secondary metabolism.


Assuntos
Taxus , Taxus/genética , Taxus/química , Taxus/metabolismo , Paclitaxel/metabolismo , Taxoides/metabolismo , Espectrometria de Massas , Folhas de Planta/genética , Folhas de Planta/metabolismo
12.
Front Plant Sci ; 13: 877304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463424

RESUMO

Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.

13.
Genes (Basel) ; 13(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36553558

RESUMO

Physalis angulata var. villosa, rich in withanolides, has been used as a traditional Chinese medicine for many years. To date, few extensive molecular studies of this plant have been conducted. In the present study, the plastome of P. angulata var. villosa was sequenced, characterized and compared with that of other Physalis species, and a phylogenetic analysis was conducted in the family Solanaceae. The plastome of P. angulata var. villosa was 156,898 bp in length with a GC content of 37.52%, and exhibited a quadripartite structure typical of land plants, consisting of a large single-copy (LSC, 87,108 bp) region, a small single-copy (SSC, 18,462 bp) region and a pair of inverted repeats (IR: IRA and IRB, 25,664 bp each). The plastome contained 131 genes, of which 114 were unique and 17 were duplicated in IR regions. The genome consisted of 85 protein-coding genes, eight rRNA genes and 38 tRNA genes. A total of 38 long, repeat sequences of three types were identified in the plastome, of which forward repeats had the highest frequency. Simple sequence repeats (SSRs) analysis revealed a total of 57 SSRs, of which the T mononucleotide constituted the majority, with most of SSRs being located in the intergenic spacer regions. Comparative genomic analysis among nine Physalis species revealed that the single-copy regions were less conserved than the pair of inverted repeats, with most of the variation being found in the intergenic spacer regions rather than in the coding regions. Phylogenetic analysis indicated a close relationship between Physalis and Withania. In addition, Iochroma, Dunalia, Saracha and Eriolarynx were paraphyletic, and clustered together in the phylogenetic tree. Our study published the first sequence and assembly of the plastome of P. angulata var. villosa, reported its basic resources for evolutionary studies and provided an important tool for evaluating the phylogenetic relationship within the family Solanaceae.


Assuntos
Physalis , Solanaceae , Filogenia , Physalis/genética , Solanaceae/genética , Genômica , Repetições de Microssatélites
14.
Res Microbiol ; 173(8): 103970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35868518

RESUMO

Penicillium digitatum is the most common cause of postharvest decay in citrus fruits around the world. Previous studies revealed that the bZIP gene family plays crucial roles in development, stress adaptation, and pathogenicity in fungi. However, little is known about the bZIP genes in P. digitatum. In this study, we systematically identified the bZIP family in 23 Penicillium species and analyzed their evolutionary relationships. We found that gene loss and gene duplication shaped the evolution of the Penicillium bZIP family. P. digitatum experienced 3 bZIP gene loss events, but with no gene duplication. We subsequently characterized the biological functions of one important member, PdatfA in P. digitatum by constructing the deletion mutant. Results showed that ΔPdatfA exhibited a moderate growth defect, reduced pigmentation, and slightly increased resistance to fungicides iprodione and fludioxonil. However, ΔPdatfA displayed similar rot symptoms to that of the wild-type. The ΔPdatfA mycelia were not affected in response to oxidative stress while its conidia showed enhanced resistance due to the upregulation of catalases. Our results provide new insights into the evolution and functions of the bZIP gene family in Penicillium.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Penicillium/genética , Citrus/microbiologia , Esporos Fúngicos
15.
Hortic Res ; 9: uhac062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769613

RESUMO

Taxus trees are major natural sources for the extraction of taxol, an anti-cancer agent used worldwide. Taxus media is a dioecious woody tree with high taxol yield. However, the sexually dimorphic accumulation of taxoids in T. media is largely unknown. Our study revealed high accumulation of taxoids in female T. media trees using a UPLC-MS/MS method. Thereafter, many differential metabolites and genes between female and male T. media trees were identified using metabolomic and transcriptomic analyses, respectively. Most of the taxol-related genes were predominantly expressed in female trees. A female-specific R2R3-MYB transcription factor gene, TmMYB39, was identified. Furthermore, bimolecular fluorescence complementation and yeast two-hybrid assays suggested the potential interaction between TmMYB39 and TmbHLH13. Several taxol biosynthesis-related promoter sequences were isolated and used for the screening of MYB recognition elements. The electrophoretic mobility shift assay indicated that TmMYB39 could bind to the promoters of the GGPPS, T10OH, T13OH, and TBT genes. Interaction between TmMYB39 and TmbHLH13 transactivated the expression of the GGPPS and T10OH genes. TmMYB39 might function in the transcriptional regulation of taxol biosynthesis through an MYB-bHLH module. Our results give a potential explanation for the sexually dimorphic biosynthesis of taxol in T. media.

16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(4): 964-8, 2009 Apr.
Artigo em Zh | MEDLINE | ID: mdl-19626882

RESUMO

It is very crucial that a representative training set can be extracted from a pool of real samples. Moreover, it is difficult to determine the adapted number of latent variables in PLS regression. For comparison, PLS models were constructed by SPXY, as well as by using the random sampling, duplex and Kennard-Stone methods for selecting a representative subset during the measurement of tangerine leaf. In order to choose correctly the dimension of calibration model, two methods were applied, one of which is leave-one-out cross validation and the other is Monte Carlo cross validation. The results present that the correlation coefficient of the predicted model is 0.9969, RMSECV is 0.7681, and RMSEP is 0.7369, which reveal that SPXY is superior to the other three strategies, and Monte Carlo cross validation can successfully avoid an unnecessary large model, and as a result decreases the risk of over-fitting for the calibration model.


Assuntos
Citrus/química , Hesperidina/análise , Extratos Vegetais/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Método de Monte Carlo , Folhas de Planta/química
17.
J Agric Food Chem ; 66(25): 6336-6347, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29874907

RESUMO

Cutleaf groundcherry ( Physalis angulata L.) is an annual plant with a number of medicinal ingredients. However, studies about the secondary metabolism of P. angulata are very limited. An integrated metabolome and proteome approach was used to reveal the variations in the metabolism associated with bioactive compounds under methyl-jasmonate (MeJA) treatment. Application of MeJA to the hairy roots could significantly increase the accumulation of most active ingredients. A targeted approach confirmed the variations in physalins D and H between MeJA treatment and the controls. Increases in the levels of a number of terpenoid backbone biosynthesis and steroid biosynthesis related enzymes, cytochrome P450 monooxygenases and 3ß-hydroxysterioid dehydrogenase might provide a potential explanation for the MeJA-induced active ingredient synthesis. Our results may contribute to a deeper understanding of the regulation mechanism underlying the MeJA-induced active compound accumulation in P. angulata.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Physalis/efeitos dos fármacos , Physalis/genética , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Physalis/química , Physalis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteômica , Esteroides/análise , Esteroides/biossíntese , Terpenos/análise , Terpenos/metabolismo
18.
Front Plant Sci ; 8: 920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659935

RESUMO

The flavonoids in the extracts of Ginkgo leaves have been shown to have great medical value: thus, a method to increase the flavonoid contents in these extracts is of significant importance for human health. In the present study, we investigated the changes in flavonoid contents and the corresponding gene expression levels in post-harvest Ginkgo leaves after various treatments. We found that both ultraviolet-B and NaCl treatment induced flavonoid accumulation. However, gene expression analysis showed that the increases in flavonoid contents were achieved by different pathways. Furthermore, post-harvest Ginkgo leaves responded differently to NaCl treatment compared with naturally grown leaves in both flavonoid contents and corresponding gene expression. In addition, combined treatment with ultraviolet-B and NaCl did not further increase the flavonoid contents compared with ultraviolet-B or NaCl treatment alone. Our results indicate the existence of a novel mechanism in response to NaCl treatment in post-harvest Ginkgo leaves, and provide a technique to increase flavonoid content in the pharmaceutical industry.

19.
Chin J Integr Med ; 18(11): 813-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23086485

RESUMO

OBJECTIVE: To evaluate the effectiveness and safety of ß-elemene Injection as an adjunctive treatment for lung cancer by systematic review. METHODS: We retrieved randomized controlled clinical trials related to the use of ß-elemene Injection as an adjunctive treatment for lung cancer from Chinese Biomedical (CBMweb), Chinese Medical Current Content (CMCC), China National Knowledge Infrastructure (CNKI), ChinaInfo, Cochrane Central Register of Controlled Trials; MEDLINE, EMBASE, OVID and TCMLARS. We also referred to an unpublished conference proceeding titled Clinical Use and Basic: Elemene Injection. We then divided the studies into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) subgroups by RevMan 5.1 software. RESULTS: A total of 21 source documents (1,467 patients) matched pre-specified criteria for determining the effectiveness and safety of ß-elemene Injection as an adjunctive treatment for lung cancer. Five studies involving 285 NSCLC patients reported a higher 24-month survival rate (39.09%) with the adjunctive treatment than with chemotherapy alone (26.17%; RR, 1.51; 95% CI, 1.03 to 2.21). Four studies involving 445 patients reported that the increased probability for improved performance status for patients treated with elemene-based combinations was higher than that of patients treated with chemotherapy alone (RR, 1.82; 95% CI, 1.45 to 2.29). The results from a subgroup analysis on 12 studies involving 974 NSCLC patients and 9 studies involving 593 patients with both SCLC and NSCLC showed that the tumor control rate for NSCLC improved more in the elemene-based combinations treatment group (78.70%) than in the chemotherapy alone control group (71.31%; RR, 1.06; 95% CI, 1.00 to 1.12). The tumor response rate for NSCLC also improved more among patients treated with elemenebased combinations (50.71%) than among patients treated with chemotherapy alone (38.04%; RR, 1.34; 95%CI, 1.17 to 1.54). In addition, the main adverse reaction to ß-elemene Injection was phlebitis, but usually only to a mild degree. An Egger's test showed no publication bias in our study (P=0.7030). CONCLUSIONS: The effectiveness of chemotherapy for the treatment of lung cancer may improve when combined with ß-elemene injection as an adjunctive treatment. The combined treatment can result in an improved quality of life and prolonged survival. However, these results require confirmation by rigorously controlled trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Quimioterapia Adjuvante , Terapia Combinada , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Injeções , Neoplasias Pulmonares/epidemiologia , Carcinoma de Pequenas Células do Pulmão/epidemiologia
20.
Int J Nanomedicine ; 5: 567-72, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20856831

RESUMO

The objective was to develop an elemene oil/water (o/w) microemulsion and evaluate its characteristics and oral relative bioavailability in rats. Elemene was used as the oil phase and drug, polysorbate 80 as a surfactant along with ethanol, propylene glycol, and glycerol as the cosurfactants. The microemulsion was prepared by mixing method, or ultrasonication method in an ultrasonic bath. Its three-dimensional response surface diagram was drawn by Mathcad software. The microemulsion was characterized by visual observation, cross-polarized microscopy, size, zeta potential, acidity, viscosity, and surface tension measurement. The drug content and entrapment efficiency were determined by ultra fast liquid chromatography (UFLC) and liquid surface method. Blood was drawn from rats at different time points after oral administration of an elemene microemulsion or a commercial elemene emulsion for measurement of the drug in plasma by UFLC to establish the pharmacokinetic parameters and relative bioavailability. The elemene microemulsion as a clarified and isotropic system containing 1% elemene (w/v), 5% ethanol (v/v), 15% propylene glycol (v/v), 15% glycerol (v/v), and 5% polysorbate 80 (w/v), was characterized as (57.7 ± 2.8) nm in size, 0.485 ± 0.032 in polydispersity index, (3.2 ± 0.4) mv in zeta potential, (5.19 ± 0.08) in pH, 6 mpa·s in viscosity, (31.8 ± 0.3) mN·m(-1) in surface tension, (8.273 ± 0.018) mg·mL(-1) in content of ß-elemene, and (99.81 ± 0.24)% in average entrapment efficiency. The area under the concentration-time curves from 0 h to 24 h (AUC(0→24h)) of the elemene microemulsion and commercial elemene emulsion were integrated to be 3.092 mg·h·L(-1) and 1.896 mg·h·L(-1) respectively, yielding a relative bioavailability of 163.1%. The present study demonstrates the elemene microemulsion as a new formulation with ease of preparation, high entrapment efficiency, excellent clarity, good stability, and improved bioavailability.


Assuntos
Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Estabilidade de Medicamentos , Emulsões , Feminino , Masculino , Óleos , Tamanho da Partícula , Polissorbatos , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/isolamento & purificação , Solubilidade , Tensoativos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA