Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 20(1): 384-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37337437

RESUMO

In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].


Assuntos
Descoberta de Drogas , RNA , RNA/genética , Descoberta de Drogas/métodos , Aprendizado de Máquina , Proteínas
2.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808496

RESUMO

Aptamers are short single-stranded DNA, RNA, or synthetic Xeno nucleic acids (XNA) molecules that can interact with corresponding targets with high affinity. Owing to their unique features, including low cost of production, easy chemical modification, high thermal stability, reproducibility, as well as low levels of immunogenicity and toxicity, aptamers can be used as an alternative to antibodies in diagnostics and therapeutics. Systematic evolution of ligands by exponential enrichment (SELEX), an experimental approach for aptamer screening, allows the selection and identification of in vitro aptamers with high affinity and specificity. However, the SELEX process is time consuming and characterization of the representative aptamer candidates from SELEX is rather laborious. Artificial intelligence (AI) could help to rapidly identify the potential aptamer candidates from a vast number of sequences. This review discusses the advancements of AI pipelines/methods, including structure-based and machine/deep learning-based methods, for predicting the binding ability of aptamers to targets. Structure-based methods are the most used in computer-aided drug design. For this part, we review the secondary and tertiary structure prediction methods for aptamers, molecular docking, as well as molecular dynamic simulation methods for aptamer-target binding. We also performed analysis to compare the accuracy of different secondary and tertiary structure prediction methods for aptamers. On the other hand, advanced machine-/deep-learning models have witnessed successes in predicting the binding abilities between targets and ligands in drug discovery and thus potentially offer a robust and accurate approach to predict the binding between aptamers and targets. The research utilizing machine-/deep-learning techniques for prediction of aptamer-target binding is limited currently. Therefore, perspectives for models, algorithms, and implementation strategies of machine/deep learning-based methods are discussed. This review could facilitate the development and application of high-throughput and less laborious in silico methods in aptamer selection and characterization.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Previsões/métodos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Inteligência Artificial/tendências , Simulação por Computador , Desenho Assistido por Computador/tendências , Ligantes , Simulação de Acoplamento Molecular , Ácidos Nucleicos/química , Reprodutibilidade dos Testes
3.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920991

RESUMO

Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer-target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer-protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas/química , Ensaios Clínicos como Assunto , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas/ultraestrutura
4.
Mol Ther ; 26(11): 2669-2680, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30415659

RESUMO

Reversing established muscle atrophy following mechanical unloading is of great clinical challenge. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in myogenesis. Here we identified a lncRNA (mechanical unloading-induced muscle atrophy-related lncRNA [lncMUMA]) enriched in muscle, which was the most downregulated lncRNA during muscle atrophy development in hindlimb suspension (HLS) mice. The in vitro and in vivo data demonstrated that the decreased expression levels of lncMUMA closely associated with a reduction of myogenesis during mechanical unloading. Mechanistically, lncMUMA promoted myogenic differentiation by functioning as a miR-762 sponge to regulate the core myogenic regulator MyoD in vitro. The enforced expression of lncMUMA relieved the decreases in MyoD protein and muscle mass in miR-762 knockin mice. Therapeutically, the enforced expression of lncMUMA improved the in vitro myogenic differentiation of myoblasts under microgravity simulation, prevented the muscle atrophy development, and reversed the established muscle atrophy in HLS mice. These findings identify lncMUMA as an anabolic regulator to reverse established muscle atrophy following mechanical unloading.


Assuntos
MicroRNAs/genética , Atrofia Muscular/genética , Proteína MyoD/genética , RNA Longo não Codificante/genética , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Elevação dos Membros Posteriores/métodos , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Atrofia Muscular/terapia , Mioblastos/metabolismo , Mioblastos/patologia
5.
Calcif Tissue Int ; 100(2): 184-192, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27830278

RESUMO

Besides the mechanical loading-dependent paradigm, skeletal muscle also serves as an endocrine organ capable of secreting cytokines to modulate bone metabolism. In this review, we focused on reviewing the myokines involved in communication from skeletal muscle to bone, i.e. (1) myostatin and myostatin-binding proteins including follistatin and decorin, (2) interleukins including interleukin-6 (IL-6), interleukin-7 (IL-7) and interleukin-15 (IL-15), (3) insulin-like growth factor 1 (IGF-1) and its binding proteins, (4) other myokines including PGC-1α-irisin system and osteoglycin (OGN). To better understand the molecular communication from skeletal muscle to bone, we have summarized the recent advances in muscle-derived cytokines regulating bone metabolism in this review.


Assuntos
Osso e Ossos/metabolismo , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Comunicação Parácrina/fisiologia , Animais , Humanos
6.
Int J Mol Sci ; 17(2)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26828485

RESUMO

Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg(-1)·day(-1)) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques.


Assuntos
Colágeno/metabolismo , Flavonoides/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Flavonoides/farmacologia , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
7.
Int J Mol Sci ; 17(8)2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27527150

RESUMO

Impaired fracture healing in aged females is still a challenge in clinics. MicroRNAs (miRNAs) play important roles in fracture healing. This study aims to identify the miRNAs that potentially contribute to the impaired fracture healing in aged females. Transverse femoral shaft fractures were created in adult and aged female mice. At post-fracture 0-, 2- and 4-week, the fracture sites were scanned by micro computed tomography to confirm that the fracture healing was impaired in aged female mice and the fracture calluses were collected for miRNA microarray analysis. A total of 53 significantly differentially expressed miRNAs and 5438 miRNA-target gene interactions involved in bone fracture healing were identified. A novel scoring system was designed to analyze the miRNA contribution to impaired fracture healing (RCIFH). Using this method, 11 novel miRNAs were identified to impair fracture healing at 2- or 4-week post-fracture. Thereafter, function analysis of target genes was performed for miRNAs with high RCIFH values. The results showed that high RCIFH miRNAs in aged female mice might impair fracture healing not only by down-regulating angiogenesis-, chondrogenesis-, and osteogenesis-related pathways, but also by up-regulating osteoclastogenesis-related pathway, which implied the essential roles of these high RCIFH miRNAs in impaired fracture healing in aged females, and might promote the discovery of novel therapeutic strategies.


Assuntos
Consolidação da Fratura , MicroRNAs/metabolismo , Envelhecimento , Animais , Linhagem Celular , Condrogênese , Biologia Computacional , Feminino , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osteoporose/metabolismo , Osteoporose/patologia , Interferência de RNA , Transcriptoma
8.
Muscle Nerve ; 49(5): 691-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23852583

RESUMO

INTRODUCTION: We assessed the time-dependent changes of transient receptor potential canonical type 1 (TRPC1) and TRPC3 expression and localization associated with muscle atrophy and regrowth in vivo. METHODS: Mice were subjected to hindlimb unloading for 7 or 14 days (7U, 14U) followed by 3, 7, or 14 days of reloading (3R, 7R, 14R). RESULTS: Soleus muscle mass and tetanic force were reduced significantly at 7U and 14U and recovered by 14R. Recovery of muscle fiber cross-sectional area was observed by 28R. TRPC1 mRNA was unaltered during the unloading-reloading period. However, protein expression remained depressed through 14R. Decreased localization of TRPC1 to the sarcolemma was observed. TRPC3 mRNA and protein expression levels were decreased significantly during the early phase of reloading. CONCLUSIONS: Given the known role of these channels in muscle development, changes observed in TRPC1 and TRPC3 may relate closely to muscle atrophy and remodeling processes.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , RNA Mensageiro/análise , Canais de Cátion TRPC/metabolismo , Adaptação Fisiológica , Animais , Imunofluorescência , Membro Posterior , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Reação em Cadeia da Polimerase em Tempo Real , Canais de Cátion TRPC/genética , Fatores de Tempo
9.
Mol Ther Nucleic Acids ; 35(3): 102303, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281703

RESUMO

Mature microRNAs (miRNAs) are short, single-stranded RNAs that bind to target mRNAs and induce translational repression and gene silencing. Many miRNAs discovered in animals have been implicated in diseases and have recently been pursued as therapeutic targets. However, conventional pharmacological screening for candidate small-molecule drugs can be time-consuming and labor-intensive. Therefore, developing a computational program to assist mature miRNA-targeted drug discovery in silico is desirable. Our previous work (https://doi.org/10.1002/advs.201903451) revealed that the unique functional loops formed during Argonaute-mediated miRNA-mRNA interactions have stable structural characteristics and may serve as potential targets for small-molecule drug discovery. Developing drugs specifically targeting disease-related mature miRNAs and their target mRNAs would avoid affecting unrelated ones. Here, we present SMTRI, a convolutional neural network-based approach for efficiently predicting small molecules that target RNA secondary structural motifs formed by interactions between miRNAs and their target mRNAs. Measured on three additional testing sets, SMTRI outperformed state-of-the-art algorithms by 12.9%-30.3% in AUC and 2.0%-18.4% in accuracy. Moreover, four case studies on the published experimentally validated RNA-targeted small molecules also revealed the reliability of SMTRI.

10.
Biochem Pharmacol ; 215: 115694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481136

RESUMO

Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.


Assuntos
Transtornos do Metabolismo de Glucose , Proteínas , Humanos , Obesidade , Glucose , Lipídeos
11.
Bio Protoc ; 12(5): e4338, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35592608

RESUMO

Osteoclast lineage cells (OLCs), including osteoclast precursors (OCPs) and mature osteoclasts (MOCs), participate in bone remodeling and mediate pathologic bone loss. Thus, it is essential to obtain OLCs for exploring their molecular features in both physiological and pathological conditions in vivo. However, the conventional protocols for obtaining OLCs ex vivo are not only time-consuming, but also unable to capture the cellular status of OLCs in vivo. In addition, the current antibody-based isolation approaches, such as fluorescence-/ magnetic-activated cell sorting, are not able to obtain pure osteoclasts because no unique surface antigen for osteoclasts has been identified. Here, we develop a rapid protocol for directly isolating OLCs from mouse bone marrow through magnetic-activated cell sorting (MACS). This protocol can rapidly enrich OCPs and MOCs, respectively, depending on the expression of the distinctive surface markers at their differentiation stages. It is optimized to isolate OLCs from four mice concurrently, of which sorting procedure could be completed within ~5 h.

12.
Front Pharmacol ; 13: 847387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355709

RESUMO

Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/ß-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the ß-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/ß-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.

13.
Nat Commun ; 13(1): 4241, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869074

RESUMO

Sclerostin negatively regulates bone formation by antagonizing Wnt signalling. An antibody targeting sclerostin for the treatment of postmenopausal osteoporosis was approved by the U.S. Food and Drug Administration, with a boxed warning for cardiovascular risk. Here we demonstrate that sclerostin participates in protecting cardiovascular system and inhibiting bone formation via different loops. Loop3 deficiency by genetic truncation could maintain sclerostin's protective effect on the cardiovascular system while attenuating its inhibitory effect on bone formation. We identify an aptamer, named aptscl56, which specifically targets sclerostin loop3 and use a modified aptscl56 version, called Apc001PE, as specific in vivo pharmacologic tool to validate the above effect of loop3. Apc001PE has no effect on aortic aneurysm and atherosclerotic development in ApoE-/- mice and hSOSTki.ApoE-/- mice with angiotensin II infusion. Apc001PE can promote bone formation in hSOSTki mice and ovariectomy-induced osteoporotic rats. In summary, sclerostin loop3 cannot participate in protecting the cardiovascular system, but participates in inhibiting bone formation.


Assuntos
Sistema Cardiovascular , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apolipoproteínas E , Densidade Óssea , Proteínas Morfogenéticas Ósseas/metabolismo , Sistema Cardiovascular/metabolismo , Feminino , Marcadores Genéticos , Humanos , Camundongos , Ratos
14.
Theranostics ; 12(13): 5645-5674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966595

RESUMO

Rationale: Sclerostin inhibition demonstrated bone anabolic potential in osteogenesis imperfecta (OI) mice, whereas humanized therapeutic sclerostin antibody romosozumab for postmenopausal osteoporosis imposed clinically severe cardiac ischemic events. Therefore, it is desirable to develop the next generation sclerostin inhibitors to promote bone formation without increasing cardiovascular risk for OI. Methods and Results: Our data showed that sclerostin suppressed inflammatory responses, prevented aortic aneurysm (AA) and atherosclerosis progression in hSOSTki.Col1a2+/G610C.ApoE-/- mice. Either loop2&3 deficiency or inhibition attenuated sclerostin's suppressive effects on expression of inflammatory cytokines and chemokines in vitro, whilst loop3 deficiency maintained the protective effect of sclerostin on cardiovascular system both in vitro and in vivo. Moreover, loop3 was critical for sclerostin's antagonistic effect on bone formation in Col1a2+/G610C mice. Accordingly, a sclerostin loop3-specific aptamer aptscl56 was identified by our lab. It could recognize both recombinant sclerostin and sclerostin in the serum of OI patients via targeting loop3. PEG40k conjugated aptscl56 (Apc001PE) demonstrated to promote bone formation, increase bone mass and improve bone microarchitecture integrity in Col1a2+/G610C mice via targeting loop3, while did not show influence in inflammatory response, AA and atherosclerosis progression in Col1a2+/G610C.ApoE-/- mice with Angiotensin II infusion. Further, Apc001PE had no influence in the protective effect of sclerostin on cardiovascular system in hSOSTki.Col1a2+/G610C.ApoE-/- mice, while it inhibited the antagonistic effect of sclerostin on bone formation in hSOSTki.Col1a2+/G610C mice via targeting loop3. Apc001PE was non-toxic to healthy rodents, even at ultrahigh dose. Apc001PE for OI was granted orphan drug designation by US-FDA in 2019 (DRU-2019-6966). Conclusion: Sclerostin loop3-specific aptamer Apc001PE promoted bone formation without increasing cardiovascular risk in OI mice.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Osteogênese Imperfeita , Animais , Apolipoproteínas E , Modelos Animais de Doenças , Fatores de Risco de Doenças Cardíacas , Camundongos , Oligonucleotídeos , Osteogênese , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/metabolismo , Fatores de Risco
15.
Nat Aging ; 1(4): 368-384, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117596

RESUMO

Osteoarthritis (OA) is a prevalent aging-related joint disease lacking disease-modifying therapies. Here, we identified an upregulation of circulating exosomal osteoclast (OC)-derived microRNAs (OC-miRNAs) during the progression of surgery-induced OA in mice. We found that reducing OC-miRNAs by Cre-mediated excision of the key miRNA-processing enzyme Dicer or blocking the secretion of OC-originated exosomes by short interfering RNA-mediated silencing of Rab27a substantially delayed the progression of surgery-induced OA in mice. Mechanistically, the exosomal transfer of OC-miRNAs to chondrocytes reduced the resistance of cartilage to matrix degeneration, osteochondral angiogenesis and sensory innervation during OA progression by suppressing tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-3. Furthermore, systemic administration of a new OC-targeted exosome inhibitor (OCExoInhib) blunted the progression of surgery-induced OA in mice. We suggest that targeting the exosomal transfer of OC-miRNAs to chondrocytes represents a potential therapeutic avenue to tackle OA progression.


Assuntos
MicroRNAs , Osteoartrite , Animais , Camundongos , MicroRNAs/genética , Condrócitos , Inibidor Tecidual de Metaloproteinase-2 , Osteoclastos , Osteoartrite/genética
16.
Front Immunol ; 12: 658097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093545

RESUMO

Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores Tumorais , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunomodulação , Peptídeos e Proteínas de Sinalização Intercelular/química , Terapia de Alvo Molecular , Neoplasias/terapia , Prognóstico , Transdução de Sinais , Relação Estrutura-Atividade , Resultado do Tratamento , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
ACS Appl Mater Interfaces ; 13(8): 9500-9519, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32603135

RESUMO

Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Portadores de Fármacos/química , Animais , Aptâmeros de Nucleotídeos/química , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip , Lipossomos/química , Nanopartículas Metálicas/química , Peptídeos/química , Técnica de Seleção de Aptâmeros/instrumentação , Técnica de Seleção de Aptâmeros/métodos
18.
BMC Cell Biol ; 11: 87, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21087483

RESUMO

BACKGROUND: The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. RESULTS: Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P < 0.001 vs the weight-bearing control). The number of quiescent (M-cadherin(+)), proliferating (BrdU(+) and myoD(+)), and differentiated (myogenin(+)) satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P < 0.01 for all). Daily application of electrical stimulation (2 × 3 h at a 20 Hz frequency) partially attenuated the reduction of the fiber cross-sectional area, satellite cell activity, and myonuclear domain (P < 0.05 for all). Extensor digitorum longus muscles were not significantly altered by hindlimb unloading. CONCLUSION: This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.


Assuntos
Estimulação Elétrica , Músculo Esquelético/citologia , Atrofia Muscular/patologia , Células Satélites de Músculo Esquelético/citologia , Animais , Bromodesoxiuridina/metabolismo , Caderinas/metabolismo , Elevação dos Membros Posteriores , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Ratos , Ratos Wistar , Células Satélites de Músculo Esquelético/metabolismo , Suporte de Carga/fisiologia
19.
Adv Exp Med Biol ; 682: 297-313, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20824533

RESUMO

One component of stretch-induced muscle damage is an increase in the permeability of the cell membrane. As a result soluble myoplasmic proteins leak out of the muscle into the plasma, extracellular proteins can enter the muscle, and extracellular ions, including calcium, are driven down their electrochemical gradient into the myoplasm. In Duchenne muscular dystrophy, caused by the absence of the cytoskeletal protein dystrophin, stretch-induced membrane damage is much more severe. The most popular theory to explain the occurrence of stretch-induced membrane damage is that stretched-contractions cause transient mechanically-induced defects in the membrane (tears or rips). Dystrophin, which is part of a mechanical link between the contractile machinery and the extracellular matrix, is thought to contribute to membrane strength so that in its absence mechanically-induced defects are worse. In our view the evidence that stretch-induced muscle damage causes increased membrane permeability is overwhelming but the evidence that the increased permeability is caused by mechanically-induced defects is weak. Instead we review the substantial evidence that the membrane permeability is a secondary consequence of the mechanical events in which elevated intracellular calcium and reactive oxygen species are important intermediaries.


Assuntos
Distrofina/deficiência , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Membrana Celular/fisiologia , Permeabilidade da Membrana Celular , Distrofina/metabolismo , Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Estresse Mecânico , Cromossomo X/genética
20.
Front Cell Dev Biol ; 8: 325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478071

RESUMO

Osteoporosis is age-related deterioration in bone mass and micro-architecture. Denosumab is a novel human monoclonal antibody for osteoporosis. It is a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor, which binds to and inhibits osteoblast-produced RANKL, in turn reduces the binding between RANKL and osteoclast receptor RANK, therefore decreases osteoclast-mediated bone resorption and turnover. However, adverse events have also been reported after denosumab treatment, including skin eczema, flatulence, cellulitis and osteonecrosis of the jaw (ONJ). Extensive researches on the mechanism of adverse reactions caused by denosumab have been conducted and may provide new insights into developing new RANKL inhibitors that achieve better specificity and safety. Aptamers are single-stranded oligonucleotides that can bind to target molecules with high specificity and affinity. They are screened from large single-stranded synthetic oligonucleotides and enriched by a technology named SELEX (systematic evolution of ligands by exponential enrichment). With extra advantages such as high stability, low immunogenicity and easy production over antibodies, aptamers are hypothesized to be promising candidates for therapeutic drugs targeting RANKL to counteract osteoporosis. In this review, we focus on the pros and cons of denosumab treatment in osteoporosis and the implication for novel aptamer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA