Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943676

RESUMO

The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.

2.
Plant Physiol ; 194(4): 2197-2207, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38095432

RESUMO

Xylan is the most abundant hemicellulosic polysaccharide in the cell walls of grasses and is pivotal for the assembly of distinct cell wall structures that govern various cellular functions. Xylan also plays a crucial role in regulating biomass recalcitrance, ultimately affecting the utilization potential of lignocellulosic materials. Over the past decades, our understanding of the xylan biosynthetic machinery and cell wall organization has substantially improved due to the innovative application of multiple state-of-the-art techniques. Notably, novel xylan-based nanostructures have been revealed in the cell walls of xylem vessels, promoting a more extensive exploration of the role of xylan in the formation of cell wall structures. This Update summarizes recent achievements in understanding xylan biosynthesis, modification, modeling, and compartmentalization in grasses, providing a brief overview of cell wall assembly regarding xylan. We also discuss the potential for tailoring xylan to facilitate the breeding of elite energy and feed crops.


Assuntos
Arabidopsis , Poaceae/genética , Xilanos , Melhoramento Vegetal , Parede Celular
3.
Plant Physiol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833284

RESUMO

P4B (2-phenyl-1-[4-(6-(piperidin-1-yl) pyridazin-3-yl) piperazin-1-yl] butan-1-one) is a novel cellulose biosynthesis inhibitor (CBI) discovered in a screen for molecules to identify inhibitors of Arabidopsis (Arabidopsis thaliana) seedling growth. Growth and cellulose synthesis inhibition by P4B were greatly reduced in a novel mutant for the cellulose synthase catalytic subunit gene CESA3 (cesa3pbr1). Cross-tolerance to P4B was also observed for isoxaben-resistant (ixr) cesa3 mutants ixr1-1 and ixr1-2. P4B has an original mode of action as compared with most other CBIs. Indeed, short-term treatments with P4B did not affect the velocity of cellulose synthase complexes (CSCs) but led to a decrease in CSC density in the plasma membrane without affecting their accumulation in microtubule-associated compartments. This was observed in the wild type but not in a cesa3pbr1 background. This reduced density correlated with a reduced delivery rate of CSCs to the plasma membrane but also with changes in cortical microtubule dynamics and orientation. At longer timescales, however, the responses to P4B treatments resembled those to other CBIs, including the inhibition of CSC motility, reduced growth anisotropy, interference with the assembly of an extensible wall, pectin demethylesterification, and ectopic lignin and callose accumulation. Together, the data suggest that P4B either directly targets CESA3 or affects another cellular function related to CSC plasma membrane delivery and/or microtubule dynamics that is bypassed specifically by mutations in CESA3.

4.
Plant Cell ; 34(12): 4778-4794, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-35976113

RESUMO

Glycosylphosphatidylinositol (GPI) anchoring is a common protein modification that targets proteins to the plasma membrane (PM). Knowledge about the GPI lipid tail, which guides the secretion of GPI-anchored proteins (GPI-APs), is limited in plants. Here, we report that rice (Oryza sativa) BRITTLE CULM16 (BC16), a membrane-bound O-acyltransferase (MBOAT) remodels GPI lipid tails and governs cell wall biomechanics. The bc16 mutant exhibits fragile internodes, resulting from reduced cell wall thickness and cellulose content. BC16 is the only MBOAT in rice and is located in the endoplasmic reticulum and Golgi apparatus. Yeast gup1Δ mutant restoring assay and GPI lipid composition analysis demonstrated BC16 as a GPI lipid remodelase. Loss of BC16 alters GPI lipid structure and disturbs the targeting of BC1, a GPI-AP for cellulose biosynthesis, to the PM lipid nanodomains. Atomic force microscopy revealed compromised deposition of cellulosic nanofibers in bc16, leading to an increased Young's modulus and abnormal mechanical properties. Therefore, BC16-mediated lipid remodeling directs the GPI-APs, such as BC1, to the cell surface to fulfill multiple functions, including cellulose organization. Our work unravels a mechanism by which GPI lipids are remodeled in plants and provides insights into the control of cell wall biomechanics, offering a tool for breeding elite crops with improved support strength.


Assuntos
Glicosilfosfatidilinositóis , Complexo de Golgi , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/metabolismo , Membrana Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Aciltransferases/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo
5.
Plant Physiol ; 194(1): 153-167, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37801619

RESUMO

Xylan is a crosslinking polymer that plays an important role in the assembly of heterogeneous cell wall structures in plants. The pollen wall, a specialized cell wall matrix, exhibits diverse sculpted patterns that serve to protect male gametophytes and facilitate pollination during plant reproduction. However, whether xylan is precisely anchored into clusters and its influence on pollen wall patterning remain unclear. Here, we report xylan clustering on the mature pollen surface in different plant species that is indispensable for the formation of sculpted exine patterns in dicot and monocot plants. Chemical composition analyses revealed that xylan is generally present at low abundance in the mature pollen of flowering plants and shows plentiful variations in terms of substitutions and modifications. Consistent with the expression profiles of their encoding genes, genetic characterization revealed IRREGULAR XYLEM10-LIKE (IRX10L) and its homologous proteins in the GT47 family of glycosyltransferases as key players in the formation of these xylan micro-/nano-compartments on the pollen surface in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). A deficiency in xylan biosynthesis abolished exine patterning on pollen and compromised male fertility. Therefore, our study outlines a mechanism of exine patterning and provides a tool for manipulating male fertility in crop breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Xilanos/metabolismo , Melhoramento Vegetal , Pólen/genética , Pólen/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 192(3): 2243-2260, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010107

RESUMO

The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis-cortex and cortex-endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Raízes de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Ferro/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Plant Physiol ; 189(2): 567-584, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234957

RESUMO

Vesicular trafficking plays critical roles in cell expansion in yeast and mammals, but information linking vesicular trafficking and cell expansion in plants is limited. Here, we isolated and characterized a rice (Oryza sativa) mutant, decreased plant height 1-1 (dph1-1), which exhibited a wide spectrum of developmental phenotypes, including reduced plant height and smaller panicles and grains. Cytological analysis revealed that limited cell expansion was responsible for the dph1-1 mutant phenotype compared to the wild-type. Map-based cloning revealed that DPH1 encodes a plant-specific protein, OsSCD2, which is homologous to Arabidopsis (Arabidopsis thaliana) STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). Subcellular localization revealed that OsSCD2 is associated with clathrin. Confocal microscopy showed that the dph1-1 mutant has defective endocytosis and post-Golgi trafficking. Biochemical and confocal data indicated that OsSCD2 physically interacts with OsSCD1 and that they are associated with intracellular structures that colocalize with microtubules. Furthermore, we found that cellulose synthesis was affected in the dph1-1 mutant, evidenced by reduced cellulose synthase gene accumulation at the transcript and protein levels, most likely resulting from an impaired localization pattern. Our results suggest that OsSCD2 is involved in clathrin-related vesicular trafficking with an important role in maintaining plant growth in rice.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Clatrina/metabolismo , Citocinese/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo
8.
Environ Sci Technol ; 57(45): 17353-17362, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37917951

RESUMO

Bioreduction of nitrate to value-added ammonium is a potentially sustainable strategy to recycle nutrients from wastewater. Here, we have proven the feasibility of the reduction of autotrophic nitrate to ammonium with electrons extracted from Fe(0). Using a Geobacter-dominated anodic biofilm as an inoculum, we achieved nitrate-to-ammonium efficiency up to 90 ± 3% with a nitrate reduction rate of 35 ± 1.3 mg N/d/L. An electron acceptor instead of an inoculum greatly influenced the Fe(0)-dissimilatory nitrate reduction to ammonium (DNRA), where nitrite as the electron acceptor provided an effective selective pressure to enrich Geobacter from initial 5 to 56%. The DNRA repressing denitrification was demonstrated by the reverse tendencies of upregulated nrfA and downregulated nirS gene transcription. This finding provides a new route for autotrophic nitrate removal and recycling from water, which has a broader implication on biogeochemical nitrogen and iron cycling.


Assuntos
Compostos de Amônio , Nitratos , Nitrogênio , Desnitrificação , Nitritos , Oxirredução
9.
Proc Natl Acad Sci U S A ; 117(35): 21766-21774, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817516

RESUMO

Leaf architecture directly determines canopy structure, and thus, grain yield in crops. Leaf droopiness is an agronomic trait primarily affecting the cereal leaf architecture but the genetic basis and underlying molecular mechanism of this trait remain unclear. Here, we report that DROOPY LEAF1 (DPY1), an LRR receptor-like kinase, plays a crucial role in determining leaf droopiness by controlling the brassinosteroid (BR) signaling output in Setaria, an emerging model for Panicoideae grasses. Loss-of-function mutation in DPY1 led to malformation of vascular sclerenchyma and low lignin content in leaves, and thus, an extremely droopy leaf phenotype, consistent with its preferential expression in leaf vascular tissues. DPY1 interacts with and competes for SiBAK1 and as a result, causes a sequential reduction in SiBRI1-SiBAK1 interaction, SiBRI1 phosphorylation, and downstream BR signaling. Conversely, DPY1 accumulation and affinity of the DPY1-SiBAK1 interaction are enhanced under BR treatment, thus preventing SiBRI1 from overactivation. As such, those findings reveal a negative feedback mechanism that represses leaf droopiness by preventing an overresponse of early BR signaling to excess BRs. Notably, plants overexpressing DPY1 have more upright leaves, thicker stems, and bigger panicles, suggesting potential utilization for yield improvement. The maize ortholog of DPY1 rescues the droopy leaves in dpy1, suggesting its conserved function in Panicoideae. Together, our study provides insights into how BR signaling is scrutinized by DPY1 to ensure the upward leaf architecture.


Assuntos
Brassinosteroides/metabolismo , Folhas de Planta/metabolismo , Setaria (Planta)/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação , Fenótipo , Fosforilação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Setaria (Planta)/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
10.
J Environ Manage ; 345: 118704, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540982

RESUMO

Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.


Assuntos
Esgotos , Zeolitas , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos , Bactérias/metabolismo , Metano , Biofilmes , Reatores Biológicos
11.
Plant Cell ; 31(5): 1113-1126, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30886126

RESUMO

Acetylation, a prevalent modification of cell-wall polymers, is a tightly controlled regulatory process that orchestrates plant growth and environmental adaptation. However, due to limited characterization of the enzymes involved, it is unclear how plants establish and dynamically regulate the acetylation pattern in response to growth requirements. In this study, we identified a rice (Oryza sativa) GDSL esterase that deacetylates the side chain of the major rice hemicellulose, arabinoxylan. Acetyl esterases involved in arabinoxylan modification were screened using enzymatic assays combined with mass spectrometry analysis. One candidate, DEACETYLASE ON ARABINOSYL SIDECHAIN OF XYLAN1 (DARX1), is specific for arabinosyl residues. Disruption of DARX1 via Tos17 insertion and CRISPR/Cas9 approaches resulted in the accumulation of acetates on the xylan arabinosyl side chains. Recombinant DARX1 abolished the excess acetyl groups on arabinoxylan-derived oligosaccharides of the darx1 mutants in vitro. Moreover, DARX1 is localized to the Golgi apparatus. Two-dimensional 13C-13C correlation spectroscopy and atomic force microscopy further revealed that the abnormal acetylation pattern observed in darx1 interrupts arabinoxylan conformation and cellulose microfibril orientation, resulting in compromised secondary wall patterning and reduced mechanical strength. This study provides insight into the mechanism controlling the acetylation pattern on arabinoxylan side chains and suggests a strategy to breed robust elite crops.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Acetilação , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Produtos Agrícolas , Esterases/genética , Esterases/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Mutação , Oligossacarídeos/metabolismo , Oryza/genética , Oryza/ultraestrutura , Melhoramento Vegetal , Proteínas de Plantas/genética
12.
Plant J ; 104(1): 252-267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662159

RESUMO

Rhamnogalacturonan-II (RG-II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG-II molecules can form an RG-II-borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross-linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG-II dimer is still unclear. In this study we investigated the two homologous UDP-D-apiose/UDP-D-xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP-D-apiose (UDP-Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP-Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG-II-borate complex than wild-type Col-0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP-Api and RG-II-borate complex formation in plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Pectinas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Pólen/metabolismo
13.
New Phytol ; 231(4): 1478-1495, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713445

RESUMO

Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.


Assuntos
Parede Celular/enzimologia , Glucosiltransferases/metabolismo , Populus , Sistemas CRISPR-Cas , Celulose/metabolismo , Técnicas de Inativação de Genes , Populus/enzimologia , Populus/genética , RNA Guia de Cinetoplastídeos , Madeira/metabolismo
14.
J Integr Plant Biol ; 63(1): 251-272, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33325153

RESUMO

The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.


Assuntos
Parede Celular/metabolismo , Microscopia de Força Atômica , Ressonância Magnética Nuclear Biomolecular
15.
Plant Physiol ; 181(2): 669-682, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358682

RESUMO

During growth, plant cells must coordinate cell expansion and cell wall reinforcement by integrating distinct regulatory pathways in concert with intrinsic and external cues. However, the mechanism underpinning this integration is unclear, as few of the regulators that orchestrate cell expansion and wall strengthening have been identified. Here, we report a rice (Oryza sativa) Class II KNOX-like homeobox protein, KNOTTED ARABIDOPSIS THALIANA7 (KNAT7), that interacts with different partners to govern cell expansion and wall thickening. A loss-of-function mutation in KNAT7 enhanced wall mechanical strength and cell expansion, resulting in improved lodging resistance and grain size. Overexpression of KNAT7 gave rise to the opposite phenotypes, with plants having weaker cell walls and smaller grains. Biochemical and gene expression analyses revealed that rice KNAT7 interacts with a secondary wall key regulator, NAC31, and a cell growth master regulator, Growth-Regulating Factor 4 (GRF4). The KNAT7-NAC31 and KNAT7-GRF4 modules suppressed regulatory pathways of cell expansion and wall reinforcement, as we show in internode and panicle development. These modules function in sclerenchyma fiber cells and modulate fiber cell length and wall thickness. Hence, our study uncovers a mechanism for the combined control of cell size and wall strengthening, providing a tool to improve lodging resistance and yield in rice production.


Assuntos
Parede Celular/fisiologia , Proteínas de Homeodomínio/fisiologia , Oryza/fisiologia , Proteínas de Arabidopsis , Proteínas Repressoras , Sementes/crescimento & desenvolvimento
16.
Mol Genet Genomics ; 294(6): 1385-1402, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31201519

RESUMO

Fiber quality and yield are important traits of cotton. Quantitative trait locus (QTL) mapping is a prerequisite for marker-assisted selection (MAS) in cotton breeding. To identify QTLs for fiber quality and yield traits, 4 backcross-generation populations (BC1F1, BC1S1, BC2F1, and BC3F0) were developed from an interspecific cross between CCRI36 (Gossypium hirsutum L.) and Hai1 (G. barbadense L.). A total of 153 QTLs for fiber quality and yield traits were identified based on data from the BC1F1, BC1S1, BC2F1 and BC3F0 populations in the field and from the BC2F1 population in an artificial disease nursery using a high-density genetic linkage map with 2292 marker loci covering 5115.16 centimorgans (cM) from the BC1F1 population. These QTLs were located on 24 chromosomes, and each could explain 4.98-19.80% of the observed phenotypic variations. Among the 153 QTLs, 30 were consistent with those identified previously. Specifically, 23 QTLs were stably detected in 2 or 3 environments or generations, 6 of which were consistent with those identified previously and the other 17 of which were stable and novel. Ten QTL clusters for different traits were found and 9 of them were novel, which explained the significant correlations among some phenotypic traits in the populations. The results including these stable or consensus QTLs provide valuable information for marker-assisted selection (MAS) in cotton breeding and will help better understand the genetic basis of fiber quality and yield traits, which can then be used in QTL cloning.


Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Cruzamentos Genéticos , Gossypium/embriologia , Sementes/genética
17.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906256

RESUMO

Attachment of glycosylphosphatidylinositols (GPIs) to the C-termini of proteins is one of the most common posttranslational modifications in eukaryotic cells. GPI8/PIG-K is the catalytic subunit of the GPI transamidase complex catalyzing the transfer en bloc GPI to proteins. In this study, a T-DNA insertional mutant of rice with temperature-dependent drooping and fragile (df) shoots phenotype was isolated. The insertion site of the T-DNA fragment was 879 bp downstream of the stop codon of the OsGPI8 gene, which caused introns retention in the gene transcripts, especially at higher temperatures. A complementation test confirmed that this change in the OsGPI8 transcripts was responsible for the mutant phenotype. Compared to control plants, internodes of the df mutant showed a thinner shell with a reduced cell number in the transverse direction, and an inhomogeneous secondary wall layer in bundle sheath cells, while many sclerenchyma cells at the tops of the main veins of df leaves were shrunken and their walls were thinner. The df plants also displayed a major reduction in cellulose and lignin content in both culms and leaves. Our data indicate that GPI anchor proteins play important roles in biosynthesis and accumulation of cell wall material, cell shape, and cell division in rice.


Assuntos
Íntrons , Oryza , Fenótipo , Folhas de Planta , Brotos de Planta , Temperatura , Aciltransferases/genética , Aciltransferases/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Mutagênese Insercional , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
19.
Plant Physiol ; 173(1): 470-481, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864442

RESUMO

Acetylation is a ubiquitous modification on cell wall polymers, which play a structural role in plant growth and stress defenses. However, the mechanisms for how crop plants accomplish cell wall polymer O-acetylation are largely unknown. Here, we report on the isolation and characterization of two trichome birefringence-like (tbl) mutants in rice (Oryza sativa), which are affected in xylan O-acetylation. ostbl1 and ostbl2 single mutant and the tbl1 tbl2 double mutant displayed a stunted growth phenotype with varied degree of dwarfism. As shown by chemical assays, the wall acetylation level is affected in the mutants and the knock-down and overexpression transgenic plants. Furthermore, NMR spectroscopy analyses showed that all those mutants have varied decreases in xylan monoacetylation. The divergent expression levels of OsTBL1 and OsTBL2 explained the chemotype difference and indicated that OsTBL1 is a functionally dominant gene. OsTBL1 was found to be Golgi-localized. The recombinant OsTBL1 protein incorporates acetyl groups onto xylan. By using xylopentaose, a preferred acceptor substrate, OsTBL1 can transfer up to four acetyl residues onto xylopentaose, and this activity showed saturable kinetics. 2D-NMR spectroscopy showed that OsTBL1 transfers acetate to both 2-O and 3-O sites of xylosyl residues. In addition, ostbl1 and tbl1 tbl2 displayed susceptibility to rice blight disease, indicating that this xylan modification is required for pathogen resistance. This study identifies the major genes responsible for xylan acetylation in rice plants.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Birrefringência , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Mutação , Oryza/genética , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Tricomas/metabolismo , Xilanos/genética
20.
Plant Cell ; 27(6): 1681-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26002868

RESUMO

Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth.


Assuntos
Celulose/biossíntese , Genes de Plantas/fisiologia , Giberelinas/fisiologia , Oryza/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glucosiltransferases/genética , Glucosiltransferases/fisiologia , Oryza/metabolismo , Proteínas de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA