Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537336

RESUMO

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Bleomicina/efeitos adversos
2.
J Sep Sci ; 47(11): e2400090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819782

RESUMO

Ephedra herb (EH), an important medicine prescribed in herbal formulas by Traditional Chinese Medicine practitioners, has been widely used in the treatment of viral pneumonia in China. However, the molecular basis of EH in viral pneumonia remains unclear. In this study, a ternary correlation multi-symptom network strategy was established based on in vivo chemical profile identification and metabolomics to explore the molecular basis of EH against viral pneumonia. Results showed that 143 compounds of EH and 70 prototype components were identified in vivo. EH could reduce alveolar-capillary barrier disruption in rats with viral pneumonia and significantly downregulate the expression of inflammatory factors and bronchoalveolar lavage fluid. Plasma metabolomics revealed that EH may be involved in the regulation of arachidonic acid, tryptophan, tyrosine, nicotinate, and nicotinamide metabolism. The multi-symptom network showed that 12 compounds have an integral function in the treatment of viral pneumonia by intervening in many pathways related to viruses, immunity and inflammation, and lung injury. Further verification demonstrated that sinapic acid and frambinone can regulate the expression of related genes. It has been shown to be a promising representative of the pharmacological constituents of ephedra.


Assuntos
Medicamentos de Ervas Chinesas , Ephedra , Metabolômica , Ratos Sprague-Dawley , Animais , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Ephedra/química , Masculino , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia
3.
Food Funct ; 15(5): 2693-2705, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376424

RESUMO

Asparagi radix is an edible herb with medicinal properties and is now widely used in clinical applications for improving pulmonary inflammation. However, the lung-protective effect and the active constituents of Asparagi radix are yet to be elucidated. Herein, the potential pulmonary protective effect of the oligosaccharides of Asparagi radix was investigated. We firstly identified eighteen oligosaccharides with different degrees of polymerization from Asparagi radix using HPLC-QTOF MS. Oligosaccharides were analysed for 20 samples of Asparagi radix collected from various regions in China using HILIC-ELSD and were found to stably exist in this herb. In this study, we found that AROS significantly reduced NO production and effectively down-regulated the mRNA expression of IL-6, IL-1ß and TNF-α in RAW 264.7 cells, thereby reducing the inflammatory response induced by LPS. AROS also inhibited LPS-stimulated intracellular ROS production. A murine model of lipopolysaccharide (LPS)-induced acute lung injury was used to evaluate the in vivo anti-inflammatory and lung protective efficacies of AROS. AROS ameliorated the damage to the pulmonary cellular architecture pathological injury and lung edema. AROS significantly decreased the levels of cytokines IL-6, TNF-α and IL-1ß; the levels of MPO and MDA; and superoxide dismutase consumption in vivo. This effect of oligosaccharides can explain the traditional usage of Asparagus cochinchinensis as a tonic medicine for respiratory problems, and oligosaccharides from Asparagi radix used as a natural ingredient can play an important role in protecting lung injury.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Pulmão , Citocinas/genética , Citocinas/metabolismo , NF-kappa B/metabolismo
4.
J Ethnopharmacol ; 332: 118354, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762210

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY: To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS: High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS: BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS: BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.


Assuntos
Aldo-Ceto Redutases , Berberina , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Humanos , Berberina/farmacologia , Berberina/uso terapêutico , Células Hep G2 , Masculino , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Aldo-Ceto Redutases/metabolismo , Aldo-Ceto Redutases/genética , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Glucose/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Resistência à Insulina
5.
Front Pharmacol ; 14: 1268708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186648

RESUMO

Thromboembolism resulting from platelet dysfunction constitutes a significant contributor to the development of cardiovascular disease. Sirtuin 6 (SIRT6), an essential NAD+-dependent enzyme, has been linked to arterial thrombosis when absent in endothelial cells. In the present study, we have confirmed the presence of SIRT6 protein in anucleated platelets. However, the precise regulatory role of platelet endogenous SIRT6 in platelet activation and thrombotic processes has remained uncertain. Herein, we present compelling evidence demonstrating that platelets isolated from SIRT6-knockout mice (SIRT6-/-) exhibit a notable augmentation in thrombin-induced platelet activation, aggregation, and clot retraction. In contrast, activation of SIRT6 through specific agonist treatment (UBCS039) confers a pronounced protective effect on platelet activation and arterial thrombosis. Moreover, in platelet adoptive transfer experiments between wild-type (WT) and SIRT6-/- mice, the loss of SIRT6 in platelets significantly prolongs the mean thrombus occlusion time in a FeCl3-induced arterial thrombosis mouse model. Mechanistically, we have identified that SIRT6 deficiency in platelets leads to the enhanced expression and release of proprotein convertase subtilisin/kexin type 9 (PCSK9), subsequently activating the platelet activation-associated mitogen-activated protein kinase (MAPK) signaling pathway. These findings collectively unveil a novel protective role of platelet endogenous SIRT6 in platelet activation and thrombosis. This protective effect is, at least in part, attributed to the inhibition of platelet PCSK9 secretion and mitogen-activated protein kinase signaling transduction. Our study provides valuable insights into the intricate interplay between SIRT6 and platelet function, shedding light on potential therapeutic avenues for managing thrombotic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA