Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Opt Express ; 32(10): 16867-16878, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858883

RESUMO

In this paper, a highly integrated terahertz (THz) biosensor is proposed and implemented, which pioneered the preparation of low-temperature gallium arsenide (LT-GaAs) thin film photoconductive antenna (PCA) on the sensor for direct generation and detection of THz waves, simplifying complex terahertz time-domain spectroscopy (THz-TDS) systems. A latch type metasurface is deposited in the detection region to produce a resonance absorption peak at 0.6 THz that is independent of polarisation. Microfluidics is utilised and automatic injection is incorporated to mitigate the experimental effects of hydrogen bond absorption of THz waves in aqueous-based environment. Additionally, cell damage is minimised by regulating the cell flow rate. The biosensor was utilised to detect the concentration of three distinct sizes of bacteria with successful results. The assay was executed as a proof of concept to detect two distinct types of breast cancer cells. Based on the experimental findings, it has been observed that the amplitude and blueshift of the resonance absorption peaks have the ability to identify and differentiate various cancer cell types. The findings of this study introduce a novel approach for developing microfluidic THz metasurface biosensors that possess exceptional levels of integration, sensitivity, and rapid label-free detection capabilities.


Assuntos
Arsenicais , Técnicas Biossensoriais , Gálio , Espectroscopia Terahertz , Gálio/química , Arsenicais/química , Técnicas Biossensoriais/instrumentação , Espectroscopia Terahertz/instrumentação , Humanos , Desenho de Equipamento , Microfluídica/instrumentação
2.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999105

RESUMO

Sugar substitutes, which generally refer to a class of food additives, mostly have vibration frequencies within the terahertz (THz) band. Therefore, THz technology can be used to analyze their molecular properties. To understand the characteristics of sugar substitutes, this study selected mannitol and erythritol as representatives. Firstly, PXRD and Raman techniques were used to determine the crystal structure and purity of mannitol and erythritol. Then, the THz time-domain spectroscopy (THz-TDS) system was employed to measure the spectral properties of the two sugar substitutes. Additionally, density functional theory (DFT) was utilized to simulate the crystal configurations of mannitol and erythritol. The experimental results showed good agreement with the simulation results. Finally, microfluidic chip technology was used to measure the THz spectroscopic properties of the two sugar substitutes in solution. A comparison was made between their solid state and aqueous solution state, revealing a strong correlation between the THz spectra of the two sugar substitutes in both states. Additionally, it was found that the THz spectrum of a substance in solution is related to its concentration. This study provides a reference for the analysis of sugar substitutes.

3.
Nano Lett ; 22(4): 1541-1548, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35118860

RESUMO

Optical regulation strategy with the aid of hybrid materials can significantly optimize the performance of terahertz devices. Gold nanobipyramids (AuNBPs) with synthetical tunability to the near-infrared band show strong local field enhancement, which improves optical coupling at the interface and benefits the modulation performance. We design AuNBPs-integrated terahertz modulators with multiple structured surfaces and demonstrate that introducing AuNBPs can effectively enhance their modulation depths. In particular, an ultrahigh modulation enhancement of 1 order of magnitude can be achieved in the AuNBPs hybrid metamaterials accompanied by the multifunctional modulation characteristics. By application of the coupled Lorentz oscillator model, the theoretical calculation suggests that the optical regulation with AuNBPs originates from increased damping rate and higher coupling coefficient under pump excitation. Additionally, a terahertz spatial light modulator is constructed to demonstrate multiple imaging display and consume extremely low power, which is promising for the potential application in spatial and frequency selective imaging.

4.
Opt Express ; 30(21): 39142-39151, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258461

RESUMO

Water-based coherent detection of broadband terahertz (THz) wave has been recently proposed with superior performances, which can alleviate the limited detection bandwidth and high probe laser energy requirement in the solid- and air-based detection schemes, respectively. Here, we demonstrate that the water-based detection method can be extended to the aqueous salt solutions and the sensitivity can be significantly enhanced. The THz coherent detection signal intensity scales linearly with the third-order nonlinear susceptibility χ(3) or quadratically with the linear refractive index η0 of the aqueous salt solutions, while the incoherent detection signal intensity scales quadratically with χ(3) or quartically with η0, proving the underlying mechanism is the four-wave mixing. Both the coherent and incoherent detection signal intensities appear positive correlation with the solution concentration. These results imply that the liquid-based THz detection scheme could provide a new technique to measure χ(3) and further investigate the physicochemical properties in the THz band for various liquids.

5.
Phys Rev Lett ; 128(9): 093902, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302828

RESUMO

Both solids and gases have been demonstrated as the materials for terahertz (THz) coherent detection. The gas-based coherent detection methods require a high-energy probe laser beam and the detection bandwidth is limited in the solid-based methods. Whether liquids can be used for THz detection and relax these problems has not yet been reported, which becomes a timely and interesting topic due to the recent observation of efficient THz wave generation in liquids. Here, we propose a THz coherent detection scheme based on liquid water. When a THz pulse and a fundamental laser beam are mixed on a free-flowing water film, a second harmonic (SH) beam is generated as the plasma is formed. Combining this THz-induced SH beam with a control SH beam, we successfully achieve the time-resolved waveform of the THz field with the frequency range of 0.1-18 THz. The required probe laser energy is as low as a few microjoules. The sensitivity of our scheme is 1 order of magnitude higher than that of the air-based method under comparable detection conditions. The scheme is sensitive to the THz polarization and the phase difference between the fundamental and control SH beams, which brings direct routes for optimization and polarization sensitive detection. Energy scaling and polarization properties of the THz-induced beam indicate that its generation can be attributed to a four-wave mixing process. This generation mechanism makes simple relationships among the probe laser, THz-induced SH, and THz field, favorable for robustness and flexibility of the detection device.

6.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502125

RESUMO

In recent years, tremendous advancements have been made in various technologies such as far-infrared, low-frequency Raman, and two-dimensional (2D) Raman terahertz (THz) spectroscopies. A coherent method has emerged from numerous experimental and theoretical investigations of molecular dynamics in liquids by comparing linear and non-linear spectroscopic techniques. Intermolecular hydrogen bond vibration, molecular reorientation motion, and interaction between molecule/ionic solute and hydrogen bonds have been demonstrated to occur in the THz region, which are closely related to their physical/chemical properties and structural dynamics. However, precise probing of various modes of motion is difficult because of the complexity of the collective and cooperative motion of molecules and spectral overlap of related modes. With the development of THz science and technology, current state-of-the-art THz sources can generate pulsed electric fields with peak intensities of the order of microvolts per centimeter (MV/cm). Such strong fields enable the use of THz waves as the light source for non-linear polarization of the medium and in turn leads to the development of the emerging THz Kerr effect (TKE) technique. Many low-frequency molecular motions, such as the collective directional motion of molecules and cooperative motion under the constraint of weak intermolecular interactions, are resonantly excited by an intense THz electric field. Thus, the TKE technique provides an interesting prospect for investigating low-frequency dynamics of different media. In view of this, this paper first summarizes the research work on TKE spectroscopy by taking a solid material without low-frequency molecular motions as an example. Starting from the principle of TKE technology and its application in investigating the properties of solid matter, we have explored the low-frequency molecular dynamics of liquid water and aqueous solutions using TKE. Liquid water is a core of life and possesses many extraordinary physical and biochemical properties. The hydrogen bond network plays a crucial role in these properties and is the main reason for its various kinetic and thermodynamic properties, which differ from those of other liquids. However, the structure of the hydrogen bond network between water and solutes is not well known. Therefore, evaluating the hydrogen bond-related kinetic properties of liquid water is important.


Assuntos
Simulação de Dinâmica Molecular , Vibração , Ligação de Hidrogênio , Água/química , Análise Espectral Raman , Soluções
7.
Opt Express ; 29(22): 36379-36388, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809049

RESUMO

The terahertz Kerr effect (TKE) spectroscopy provides time-resolved measurement of low-frequency molecular motions of liquids. Here, the intense broadband terahertz (THz) pulses resonantly excite multiple molecular modes in pure ethanol and ethanol-water mixtures. For pure ethanol, the obtained unipolar TKE response contains the molecular relaxation information extending over tens of picoseconds, which originates from the coupling between the permanent molecular dipole moment of ethanol and the THz electric field. For ethanol-water mixtures with different molar proportions, the results observed on the sub-picosecond time scale can always be divided into the linear superposition of the TKE signals of pure ethanol and water. Under the observation time window over tens of picoseconds (after 1 picosecond), the relative molecular contribution of ethanol in the mixture changes nonlinearly with the increase of water molecules, implying the complex structural perturbation of ethanol hydrogen bond network in the mixture. This work provides a new perspective for further investigation on the hydrogen bond network structure and dynamics in aqueous amphiphilic solutions.

8.
Opt Lett ; 46(2): 230-233, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448994

RESUMO

The microscopic mechanism for ionic influence on the hydrogen bond network of water has not been fully understood. Here we employ the terahertz Kerr effect (TKE) technique to map the intermolecular hydrogen bond dynamics in a series of aqueous halide solutions at the sub-picosecond scale. Compared with pure water, the significantly enhanced bipolar TKE response associated with polarization anisotropy in an ionic aqueous solution is successfully captured. We decompose the measured TKE response into different molecular motion modes and demonstrate that the obviously increasing positive polarity response is mainly due to the anion-water hydrogen bond vibration mode with the resonant THz electric field excitation. Our measurement results provide an experimental basis for further insight into the effects of ions on the structure and dynamics of a hydrogen bond in water.

9.
Appl Opt ; 60(29): 9036-9041, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623983

RESUMO

A terahertz (THz) photoconductive antenna is prepared using, to the best of our knowledge, a novel method, which has high yield and strong stability. It eliminates the stripping process of a thin-film THz antenna and effectively prevents the toxicity of the corrosion solution, the easy damage in the transfer process, and the weak bonding with the substrate. First, a 200 µm copper wire is bundled on a low-temperature GaAs epitaxial wafer, and then the electrode of the photoconductive antenna is fabricated using the vacuum evaporation method. Finally, the THz time-domain signal with a high signal-to-noise ratio and good repeatability is obtained using an 800 nm laser. Additionally, the influence of pump light and detection light power on THz signal intensity is studied when the total optical power is unchanged. Results show that when the total power of the laser is greater than a certain value, there is an optimal ratio between the pump power and the detection power, which can maximize the signal-to-noise ratio of the THz wave. This provides a basis for the effective application of a THz antenna and lays a foundation for improving the detection sensitivity of samples.

10.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833528

RESUMO

Terahertz focal plane array imaging methods, direct camera imaging and conventional light field imaging methods are incapable of resolving and separating layers of multilayer objects. In this paper, for the purpose of fast, high-resolution and layer-resolving imaging of multilayer structures with different reflection characteristics, a novel angular intensity filtering (AIF) method based on terahertz light-field imaging is purposed. The method utilizes the extra dimensional information from the 4D light field and the reflection characteristics of the imaging object, and the method is capable to resolve and reconstruct layers individually. The feasibility of the method is validated by experiment on both "idealized" and "practical" multilayer samples, and the advantages in performance of the method are proven by quantitative comparison with conventional methods.

11.
Opt Express ; 28(23): 35330-35338, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182981

RESUMO

Controlling the polarization state of an optical pulse within a short gating time facilitates ultrafast all-optical data processing and recording. Using the innovative all-optical modulation method such as the transient terahertz Kerr effect (TKE), the polarization state of the optical pulse can be switched within the gating time on the sub-picosecond scale. In this work, we use high-frequency single-cycle terahertz (THz) pulses to excite the Kerr effects of materials and explore the potential to shorten the gating time of the polarization modulator. A low-density polyethylene (LDPE) material with good Kerr-related properties is proposed to improve the performance of the TKE-based modulator and the obtained ultrafast gating time (FWHM) can reach 86 fs. Experimental evidence for the thickness dependence of the Kerr response demonstrates that the errors caused by optical transmission factors in the LDPE medium can be ignored, and thus the ultrafast gating modulation is mainly limited by the duration of probe pulse. Compared with common TKE-based materials, we believe that the low-cost LDPE is a good candidate to achieve high-power TKE-based ultrafast pulse switching.

12.
Opt Express ; 28(14): 20598-20608, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680116

RESUMO

This study experimentally demonstrates and theoretically analyzes the enhancement of terahertz (THz) waves from two-color laser-field (consisting of a near-infrared femtosecond laser and its second-harmonic wave) induced air plasma using an additional 800 nm femtosecond laser. The experiments revealed that the additional 800 nm laser increased the THz energy up to 22 times. To understand the enhancement mechanism and reveal the maximum enhancement conditions, the effects of the 800 nm beam's polarization and energy variations of both beams on the THz amplification were studied. With the increase in the 800 nm pulse energy, the THz yield initially increases, and then decreases after reaching an inflection point. The THz increase rate continues to increase with the decrease in energy of the near-infrared two-color fields. The 800 nm beam could efficiently modulate the THz spectral energy distribution by increasing the high-frequency components, while decreasing the low-frequency components.

13.
Opt Express ; 28(21): 31436-31445, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115116

RESUMO

We have grown VO2 films and combined with terahertz metamaterials to manipulate the memory effect during the insulator-to-metal transition. The temperature-dependent resonant frequency of hybrid structure shows a thermal hysteresis accompanied with frequency shift and bandwidth variation due to the presence of a VO2 dielectric layer. This frequency memory effect significantly depends on the metallic micro-structure. Further theoretical calculation demonstrates this phenomenon mainly originates from the different coupling strength between VO2 and metallic structures. Our findings could facilitate the application of VO2 films in the smart window and dynamical terahertz modulators.

14.
Opt Express ; 25(21): 25842-25852, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041247

RESUMO

We investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. Using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understanding of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.

15.
Opt Express ; 25(20): 23669-23676, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041318

RESUMO

We demonstrate a composite multiscale entropy (CMSE) method of terahertz (THz) signal complexity analysis to distinguish different biological tissues. The THz signals reflected from fresh porcine skin and muscle tissues were measured and analyzed. The statistically significant difference and separation of the two tissues based on several parameters were analyzed and compared for THz spectroscopy and imaging, which verified the better performance of the CMSE method and further enhancement of the contrast among THz signals that interact with different tissues. This process provides a better analysis and discrimination method for THz spectroscopy and imaging in biomedical applications.


Assuntos
Espectroscopia Terahertz/métodos , Animais , Entropia , Músculos , Suínos
16.
Opt Express ; 25(3): 1723-1731, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519026

RESUMO

The conductivity of poly(3,4-ethylene dioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) is significantly enhanced on adding some organic solvent such as ethylene glycol (EG). In this paper, the optoelectronic properties of EG doped PEDOT/PSS on transmission and anti-reflection effects are investigated in detail by terahertz time domain spectroscopy (THz-TDS). The transmission line circuit theory gives us an insight into the THz transmission mechanisms of the main and second pulses. In particular, we show that the conductivities of 10% EG doped PEDOT/PSS are nearly frequency independent from 0.3 to 1.5 THz. To demonstrate applications of this property, we design and fabricate broadband terahertz neutral density filters and anti-reflection coatings based on 10% EG doped PEDOT/PSS thin films with varying thickness. Our measurements highlight the capability of THz-TDS to characterize the conductivity of EG doped PEDOT/PSS, which is essential for broadband optoelectronic devices in THz region.

17.
Phys Rev Lett ; 119(23): 235001, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286697

RESUMO

In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω_{2}/ω_{1}=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω_{2}/ω_{1}=1:4 and 2∶3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(2): 346-9, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-30264959

RESUMO

As emerging modalities, terahertz time-domain spectroscopy and imaging have been widely applied to investigate the optical properties of different biological tissues. The substrate materials are usually needed for biological spectroscopic measurements. The ultra-broadband and facility in remote sensing of the terahertz air-biased-coherent-detection (ABCD) system mean it is a good potential tool for the spectroscopic study of biological tissues. In this paper, the optical parameters of four typical substrate materials (quartz, high-density polyethylene, teflon and paraffin) are measured using terahertz ABCD spectrometer. The absorption coefficients and refractive indices are presented in the frequency range of 1~15 THz. It is demonstrated that high-density polyethylene and paraffin are good candidates as sample substrate for broadband terahertz biological spectroscopic measurement. However, quartz and teflon which are common substrate materials in narrowband (0.1~3 THz) terahertz system can not be utilized in high terahertz frequency range because they have strong absorption above 5 THz.


Assuntos
Espectroscopia Terahertz , Refratometria
19.
Opt Express ; 24(8): 7915-21, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137233

RESUMO

We present a novel contrast-enhanced continuous-terahertz-wave imaging modality based on magnetic induction heating of superparamagnetic iron oxide nanoparticles (SPIOs), which yields a highly sensitive increment in the reflection terahertz (THz) signal in SPIO solution upon exposure to an alternating magnetic field. In the differential and relative refection change focal-plane images before and after alternating magnetic field exposure, a dramatic contrast is demonstrated between water with and without SPIOs. This low-cost, simple, and stable contrast-enhanced continuous-THz-wave imaging system is suitable for miniaturization and real-time imaging application.


Assuntos
Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem Terahertz/métodos
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(12): 3870-4, 2016 Dec.
Artigo em Zh | MEDLINE | ID: mdl-30235402

RESUMO

The changes of composition of the processed traditional Chinese medicine will affect the curative effect of drug, such as the four kinds of processed rhubarb. The characteristics data of each rhubarb was measured with terahertz spectroscopy system and analyzed with chemometrics, and the spectral data was classified according to the category of rhubarb. The substance components of anthraquinone and tannins make changes in processed rhubarb by thin layer chromatography (TLC). The correlation among the terahertz spectroscopy of processed rhubarb was in accordance with the variations of content. This means that terahertz spectroscopy is sensitive to the substance components of processed Chinese traditional medicine. It can also pave the way for the study of the structural changes of traditional Chinese medicine.


Assuntos
Rheum , Espectroscopia Terahertz , Antraquinonas , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Taninos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA