Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 581(7808): 278-282, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433619

RESUMO

Human eyes possess exceptional image-sensing characteristics such as an extremely wide field of view, high resolution and sensitivity with low aberration1. Biomimetic eyes with such characteristics are highly desirable, especially in robotics and visual prostheses. However, the spherical shape and the retina of the biological eye pose an enormous fabrication challenge for biomimetic devices2,3. Here we present an electrochemical eye with a hemispherical retina made of a high-density array of nanowires mimicking the photoreceptors on a human retina. The device design has a high degree of structural similarity to a human eye with the potential to achieve high imaging resolution when individual nanowires are electrically addressed. Additionally, we demonstrate the image-sensing function of our biomimetic device by reconstructing the optical patterns projected onto the device. This work may lead to biomimetic photosensing devices that could find use in a wide spectrum of technological applications.


Assuntos
Materiais Biomiméticos , Biomimética/instrumentação , Compostos de Cálcio , Nanofios , Óxidos , Retina , Titânio , Desenho de Equipamento , Humanos , Robótica/instrumentação , Visão Ocular
2.
Nano Lett ; 22(7): 3062-3070, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35312323

RESUMO

Charge collection narrowing (CCN) has been reported to be an efficient strategy to achieve optical filter-free narrowband photodetection (NPD) with metal halide perovskite (MHP) single crystals. However, the necessity of utilizing thick crystals in CCN limits their applications in large scale, flexible, self-driven, and high-performance optoelectronics. Here, for the first time, we fabricate vertically integrated MHP quantum wire/nanowire (QW/NW) array based photodetectors in nanoengineered porous alumina membranes (PAMs) showing self-driven broadband photodetection (BPD) and NPD capability simultaneously. Two cutoff detection edges of the NPDs are located at around 770 and 730 nm, with a full-width at half-maxima (fwhm) of around 40 nm. The optical bandgap difference between the NWs and the QWs, in conjunction with the high carrier recombination rate in QWs, contributes to the intriguing NPD performance. Thanks to the excellent mechanical flexibility of the PAMs, a flexible NPD is demonstrated with respectable performance. Our work here opens a new pathway to design and engineer a nanostructured MHP for novel color selective and full color sensing devices.

3.
Nano Lett ; 21(12): 5036-5044, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124910

RESUMO

With strikingly high speed, data retention ability and storage density, resistive RAMs have emerged as a forerunning nonvolatile memory. Here we developed a Re-RAM with ultra-high density array of monocrystalline perovskite quantum wires (QWs) as the switching matrix with a metallic silver conducting pathway. The devices demonstrated high ON/OFF ratio of ∼107 and ultra-fast switching speed of ∼100 ps which is among the fastest in literature. The devices also possess long retention time of over 2 years and record high endurance of ∼6 × 106 cycles for all perovskite Re-RAMs reported. As a concept proof, we have also successfully demonstrated a flexible Re-RAM crossbar array device with a metal-semiconductor-insulator-metal design for sneaky path mitigation, which can store information with long retention. Aggressive downscaling to ∼14 nm lateral dimension produced an ultra-small cell effectively having 76.5 nm2 area for single bit storage. Furthermore, the devices also exhibited unique optical programmability among the low resistance states.

4.
Water Sci Technol ; 84(3): 499-511, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34388115

RESUMO

Photocathodic protection is an economical and environmental metal anticorrosion method. In this research, we successfully synthesized the g-C3N4/GO (15 wt%)/MoS2 catalytic materials by a facile hydrothermal method. The results show that the as-prepared g-C3N4/GO (15 wt%)/MoS2 composites prominently enhanced photocatalytic activities for the photocathodic protection of 304 stainless steel (SS) compared with the corresponding pristine g-C3N4 and MoS2. Notably, the AC impedance results demonstrated that the Rct value of 304 SS coupled with g-C3N4/GO (15 wt%)/MoS2 decreased to 35.66 Ω•cm2, which is 29 and 37 times lower than that of g-C3N4 and MoS2 alone. In addition, g-C3N4/GO (15 wt%)/MoS2 provided the highest current density (77.19 µA•cm2) for the 304 SS, which is four times that of pristine g-C3N4. All results indicate that as-prepared g-C3N4/GO (15 wt%)/MoS2 photocatalysts have produced a distinct enhancement on photocathodic protection performance. An optimum decorating amount of MoS2 onto g-C3N4 forms heterojunctions of g-C3N4/MoS2, which favor the separation of electrons and holes efficiently. Furthermore, the addition of GO further promotes the separation and transfer of photo-induced carriers.


Assuntos
Molibdênio , Aço Inoxidável , Catálise , Luz
5.
Nano Lett ; 19(5): 2850-2857, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30933527

RESUMO

High-photoluminescence quantum yield (PLQY) is required to reach optimal performance in solar cells, lasers, and light-emitting diodes (LEDs). Typically, PLQY can be increased by improving the material quality to reduce the nonradiative recombination rate. It is in principle equally effective to improve the optical design by nanostructuring a material to increase light out-coupling efficiency (OCE) and introduce quantum confinement, both of which can increase the radiative recombination rate. However, increased surface recombination typically minimizes nanostructure gains in PLQY. Here a template-guided vapor phase growth of CH3NH3PbI3 (MAPbI3) nanowire (NW) arrays with unprecedented control of NW diameter from the bulk (250 nm) to the quantum confined regime (5.7 nm) is demonstrated, while simultaneously providing a low surface recombination velocity of 18 cm s-1. This enables a 56-fold increase in the internal PLQY, from 0.81% to 45.1%, and a 2.3-fold increase in OCEy to increase the external PLQY by a factor of 130, from 0.33% up to 42.6%, exclusively using nanophotonic design.

6.
Nano Lett ; 17(8): 4951-4957, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28735542

RESUMO

Alluring optical and electronic properties have made organometallic halide perovskites attractive candidates for optoelectronics. Among all perovskite materials, inorganic CsPbX3 (X is halide) in black cubic phase has triggered enormous attention recently owing to its comparable photovoltaic performance and high stability as compared to organic and hybrid perovskites. However, cubic phase stabilization at room temperature for CsPbI3 still survives as a challenge. Herein we report all inorganic three-dimensional vertical CsPbI3 perovskite nanowires (NWs) synthesized inside anodic alumina membrane (AAM) by chemical vapor deposition (CVD) method. It was discovered that the as-grown NWs have stable cubic phase at room temperature. This significant improvement on phase stability can be attributed to the effective encapsulation of NWs by AAM and large specific area of these NWs. To demonstrate device application of these NWs, photodetectors based on these high density CsPbI3 NWs were fabricated demonstrating decent performance. Our discovery suggests a novel and practical approach to stabilize the cubic phase of CsPbI3 material, which will have broad applications for optoelectronics in the visible wavelength range.

7.
Nano Lett ; 17(1): 523-530, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28009510

RESUMO

Organometal halide perovskite materials have triggered enormous attention for a wide range of high-performance optoelectronic devices. However, their stability and toxicity are major bottleneck challenges for practical applications. Substituting toxic heavy metal, that is, lead (Pb), with other environmentally benign elements, for example, tin (Sn), could be a potential solution to address the toxicity issue. Nevertheless, even worse stability of Sn-based perovskite material than Pb-based perovskite poses a great challenge for further device fabrication. In this work, for the first time, three-dimensional CH3NH3SnI3 perovskite nanowire arrays were fabricated in nanoengineering templates, which can address nanowire integration and stability issues at the same time. Also, nanowire photodetectors have been fabricated and characterized. Intriguingly, it was discovered that as the nanowires are embedded in mechanically and chemically robust templates, the material decay process has been dramatically slowed down by up to 840 times, as compared with a planar thin film. This significant improvement on stability can be attributed to the effective blockage of diffusion of water and oxygen molecules within the templates. These results clearly demonstrate a new and alternative strategy to address the stability issue of perovskite materials, which is the major roadblock for high-performance optoelectronics.

8.
Zhongguo Zhong Yao Za Zhi ; 42(13): 2524-2531, 2017 Jul.
Artigo em Zh | MEDLINE | ID: mdl-28840694

RESUMO

Tianma(the tuber of Gastrodia eleta) is a widely used and pricy Chinese herb. Its counterfeits are often found in herbal markets, which are the plant materials with similar macroscopic characteristics of Tianma. Moreover, the prices of Winter Tianma(cultivated Tianma) and Spring Tianma(mostly wild Tianma) have significant difference. However, it is difficult to identify the true or false, good or bad quality of Tianma samples. Thus, a total of 48 Tianma samples with different characteristics(including Winter Tianma, Spring Tianma, slice, powder, etc.) and 9 plant species 10 samples of Tianma counterfeits were collected and analyzed by HPLC-DAD-MS techniques. After optimizing the procedure of sample preparation, chromatographic and mass-spectral conditions, the HPLC chromatograms of all those samples were collected and compared. The similarities and Fisher discriminant analysis were further conducted between the HPLC chromatograms of Tianma and counterfeit, Winter Tianma and Spring Tianma. The results showed the HPLC chromatograms of 48 Tianma samples were similar at the correlation coefficient more than 0.848(n=48). Their mean chromatogram was simulated and used as Tianma HPLC fingerprint. There were 11 common peaks on the HPLC chromatograms of Tianma, in which 6 main peaks were chosen as characteristic peaks and identified as gastrodin, p-hydroxybenzyl alcohol, parishin A, parishin B, parishin C, parishin E, respectively by comparison of the retention time, UV and MS data with those of standard chemical compounds. All the six chemical compounds are bioactive in Tianma. However, the HPLC chromatograms of the 10 counterfeit samples were significantly different from Tianma fingerprint. The correlation coefficients between HPLC fingerprints of Tianma with the HPLC chromatograms of counterfeits were less than 0.042 and the characteristic peaks were not observed on the HPLC chromatograms of these counterfeit samples. It indicated the true or false Tianma can be identified by either the similarity or characteristic peaks on HPLC fingerprint. Comparing the Winter Tianma with Spring Tianma showed that the HPLC chromatograms of 15 winter Tianma samples and 11 spring Tianma samples were similar at the mean correlation coefficient of 0.908. But the intensity of the characteristic peaks were different between the two groups of Tianma samples, i.e. the intensity of gastrodin, paishin A and C in winter Tianma was lower than those in spring Tianma. The Winter Tianma and Spring Tianma could be discriminated by either the Fisher unstandardized discrimination function or Linear discriminant function, based on the peak areas of 11 common peaks on HPLC chromatograms as variate.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/normas , Gastrodia/química , Tubérculos/química , Análise Discriminante , Plantas Medicinais/química , Controle de Qualidade , Estações do Ano
9.
ACS Nano ; 18(12): 8557-8570, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482819

RESUMO

Perovskite light-emitting diodes (LEDs) have emerged as one of the most propitious candidates for next-generation lighting and displays, with the highest external quantum efficiency (EQE) of perovskite LEDs already surpassing the 20% milestone. However, the further development of perovskite LEDs primarily relies on addressing operational instability issues. This Perspective examines some of the key factors that impact the lifetime of perovskite LED devices and some representative reports on recent advancements aimed at improving the lifetime. Our analysis underscores the significance of "nano" strategies in achieving long-term stable perovskite LEDs. Significant efforts must be directed toward proper device encapsulation, perovskite material passivation, interfacial treatment to address environment-induced material instability, bias-induced phase separation, and ion migration issues.

10.
Pathol Res Pract ; 258: 155349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772115

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.


Assuntos
Doença de Parkinson , RNA não Traduzido , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Inflamassomos/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
11.
ACS Appl Mater Interfaces ; 16(4): 5028-5035, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235664

RESUMO

Artificial vision systems (AVS) have potential applications in visual prosthetics and artificially intelligent robotics, and they require a preprocessor and a processor to mimic human vision. Halide perovskite (HP) is a promising preprocessor and processor due to its excellent photoresponse, ubiquitous charge migration pathways, and innate hysteresis. However, the material instability associated with HP thin films hinders their utilization in physical AVSs. Herein, we have developed ultrahigh-density arrays of robust HP nanowires (NWs) rooted in a porous alumina membrane (PAM) as the active layer for an AVS. The NW devices exhibit gradual photocurrent change, responding to changes in light pulse duration, intensity, and number, and allow contrast enhancement of visual inputs with a device lifetime of over 5 months. The NW-based processor possesses temporally stable conductance states with retention >105 s and jitter <10%. The physical AVS demonstrated 100% accuracy in recognizing different shapes, establishing HP as a reliable material for neuromorphic vision systems.

12.
Adv Mater ; 36(24): e2311106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388858

RESUMO

Electrochemical biosensors have emerged as one of the promising tools for tracking human body physiological dynamics via non-invasive perspiration analysis. However, it remains a key challenge to integrate multiplexed sensors in a highly controllable and reproducible manner to achieve long-term reliable biosensing, especially on flexible platforms. Herein, a fully inkjet printed and integrated multiplexed biosensing patch with remarkably high stability and sensitivity is reported for the first time. These desirable characteristics are enabled by the unique interpenetrating interface design and precise control over active materials mass loading, owing to the optimized ink formulations and droplet-assisted printing processes. The sensors deliver sensitivities of 313.28 µA mm-1 cm-2 for glucose and 0.87 µA mm-1 cm-2 for alcohol sensing with minimal drift over 30 h, which are among the best in the literature. The integrated patch can be used for reliable and wireless diet monitoring or medical intervention via epidermal analysis and would inspire the advances of wearable devices for intelligent healthcare applications.


Assuntos
Técnicas Biossensoriais , Glucose , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Glucose/análise , Humanos , Suor/química , Suor/metabolismo , Impressão , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Etanol/análise
13.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748790

RESUMO

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

14.
Sci Robot ; 9(90): eadi8666, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748782

RESUMO

Garnering inspiration from biological compound eyes, artificial vision systems boasting a vivid range of diverse visual functional traits have come to the fore recently. However, most of these artificial systems rely on transformable electronics, which suffer from the complexity and constrained geometry of global deformation, as well as potential mismatches between optical and detector units. Here, we present a unique pinhole compound eye that combines a three-dimensionally printed honeycomb optical structure with a hemispherical, all-solid-state, high-density perovskite nanowire photodetector array. The lens-free pinhole structure can be designed and fabricated with an arbitrary layout to match the underlying image sensor. Optical simulations and imaging results matched well with each other and substantiated the key characteristics and capabilities of our system, which include an ultrawide field of view, accurate target positioning, and motion tracking function. We further demonstrate the potential of our unique compound eye for advanced robotic vision by successfully completing a moving target tracking mission.

15.
Int Urol Nephrol ; 55(2): 437-448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35986866

RESUMO

PURPOSE: Sepsis is a systemic life-threatening inflammatory disease, which leads to septic acute kidney injury (AKI). Circular RNAs (circRNAs) are involved in septic AKI. Herein, we aimed to expound the action of circ_0020339 in septic AKI. The dysregulation of plasma circRNAs between patients with septic non-AKI and patients with septic AKI were screened by circRNA chip. METHODS: The dysregulation of circ_0020339, microRNA (miR)-17-5p, and inositol polyphosphate multi kinase (IPMK) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were measured by cell counting kit-8 (CCK-8) and flow cytometry, respectively. The release of serum creatinine (SCr), tissue inhibitor metalloproteinase-2 (TIMP-2), insulin-like growth factor binding protein-7 (IGFBP7), tumor necrosis factor (TNF)α and interleukin (IL)-1ß was evaluated by enzyme-linked immunosorbent assay (ELISA). Bioinformatic analysis, dual-luciferase reporter assay and miRNA pull down assay were used to confirm the interaction between miR-17-5p and circ_0020339 or IPMK 3'untranslated region (UTR). Protein level of IPMK, TNF receptor-associated factor 6 (TRAF6), phosphorylated AKT (p-AKT)/total (t)-AKT, p-nuclear factor kappa-B (NF-κB) kinase (p-IKK)/t-IKK, p-inhibitor of NF-κB (p-IκB)α/t-IκBα, and p-p65/t-p65 were conducted by western blot. RESULTS: Circ_0020339 was upregulated in the plasma of patients with septic AKI as well as LPS-treated HK2 cells and C57BL/6 mice relative to the corresponding counterparts. Functionally, circ_0020339 was positively correlated with markers of renal functional injury and inflammation in patients with septic AKI; si-circ_0020339 facilitated cell proliferation, while restrained cell apoptosis and inflammation in LPS-triggered HK2 cells; meanwhile, si-circ_0020339 restrained survival rate, renal functional injury and inflammation in LPS-triggered C57BL/6 mice. Furthermore, circ_0020339 and IPMK 3'UTR shared the same complementary sites with miR-17-5p. CONCLUSION: si-circ_0020339 attenuated LPS-induced cell damage by targeting miR-17-5p/IPMK axis and inactivation of TRAF6/p-AKT/p-IKK/p-IκBα/p-p65. Altogether, plasma circ_0020339 serves as a novel diagnostic marker of patients with septic AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Camundongos , Animais , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Lipopolissacarídeos , Metaloproteinase 2 da Matriz , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , RNA Circular/genética , Fator 6 Associado a Receptor de TNF , Injúria Renal Aguda/genética , Apoptose/genética , Biomarcadores , MicroRNAs/genética
16.
J Thorac Dis ; 15(4): 1684-1693, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37197509

RESUMO

Background: Sepsis is one of the main causes of death in critically ill patients. Immunosuppression was involved deeply in the process of sepsis. The status of research on sepsis-related immunosuppression remains unclear. In this study, a bibliometric analysis was conducted to provide a preliminarily analysis of the current research status in sepsis-related immunosuppression. Methods: The Science Citation Index Expanded (SCI-E) database in the Web of Science Core Collection was used as the data source for the literature search, and the time was set from the inception of the database to the last retrieval time for this study (i.e., May 21, 2022). Using the topic search, we searched for "sepsis" and then for "immunosuppression" in the results to obtain the final results. On the search page of the SCI-E database, we selected the document type, topic direction, MeSH topic heading, MeSH qualifier, keywords, author, journal, country, research institution, language, etc., to obtain the distribution results, and manually removed any duplicate records. We analyzed the use of keywords in the literature and the centrality of the authors, countries, and research institutions. Results: A total of 4,132 articles were retrieved from the database over the search period of 1900 to May 21, 2022. The number of articles published increased annually. A trend of rapid growth was also observed in the number of citations. The most common topic words were humans, male, and female. The most used keywords were sepsis, immunosuppression, and male. The most published researcher was Monneret from Lyon, France. The authors of the article mainly specialized in immunology and surgery. Moldawer and Chaudry from the United States (US) had engaged in the most collaborations with other researchers. The journals that publish literature in this field are mainly journals related to critical care medicine, and the core journals included Shock, Critical Care, and Critical Care Medicine. Conclusions: More and more studies are being published on sepsis-related immunosuppression and largely being conducted in developed countries. Chinese researchers need to carry out more collaborative research.

17.
Open Life Sci ; 18(1): 20220551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816800

RESUMO

This study investigated the effect of combined thymosin α1 and vitamin C (Tα1 + VitC) on the immunological responses of septic rats. Five groups were designed. The septic model was established by the cecal ligation puncture (CLP) method. The sham group did not undergo CLP, the model group was given normal saline solution, the Tα1 group was given Tα1 (200 µg/kg), the VitC group was given VitC (200 mg/kg), and the Tα1 + VitC group was given Tα1 + VitC. Specimens for immunological analyses were collected at 6, 12, 24, and 48 h posttreatment in each group except for the sham group (only at 48 h). CD4 + CD25 + T cells in the peripheral blood and dendritic cell (DC) proportions in the spleen were analyzed by flow cytometry. Tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), transforming growth factor-ß (TGF-ß1), and nuclear factor kappa-B (NF-κB) were measured by ELISA. CD4 + CD25 + T cells and OX62 + DCs levels significantly increased in the model group and decreased in the Tα1 and/or VitC treatment groups. Similarly, the levels of TNF-α, IL-6, TGF-ß1, and NF-κB significantly increased in the model group and decreased in the Tα1, VitC, and Tα1 + VitC groups, indicating that combined Tα1 and VitC therapy may help regulate the immunological state of patients with sepsis, thereby improving prognosis.

18.
Nat Commun ; 14(1): 4611, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528109

RESUMO

Metal halide perovskites have shown great promise as a potential candidate for next-generation solid state lighting and display technologies. However, a generic organic ligand-free and antisolvent-free solution method to fabricate highly efficient full-color perovskite light-emitting diodes has not been realized. Herein, by utilizing porous alumina membranes with ultra-small pore size as templates, we have successfully fabricated crystalline all-inorganic perovskite quantum wire arrays with ultrahigh density and excellent uniformity, using a generic organic ligand-free and anti-solvent-free solution method. The quantum confinement effect, in conjunction with the high light out-coupling efficiency, results in high photoluminescence quantum yield for blue, sky-blue, green and pure-red perovskite quantum wires arrays. Consequently, blue, sky-blue, green and pure-red LED devices with spectrally stable electroluminescence have been successfully fabricated, demonstrating external quantum efficiencies of 12.41%, 16.49%, 26.09% and 9.97%, respectively, after introducing a dual-functional small molecule, which serves as surface passivation and hole transporting layer, and a halide vacancy healing agent.

19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(5): 492-496, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35728850

RESUMO

OBJECTIVE: To analyze the treatment process of a renal transplant patient infected with coronavirus disease 2019 (COVID-19), and discuss the management strategy for the immunocompromised hosts. METHODS: The diagnosis and treatment of a case of transplant patients with COVID-19 admitted to Horgos designated hospital of Xinjiang Uygur Autonomous Region in October 2021 were reviewed. The medical history and laboratory and imaging examination treatment and outcome of this case were analyzed. RESULTS: The recipient was a middle-aged male with a time from renal transplantation of 3 years. The onset was moderate to low fever, accompanied by cough and fatigue. Chest CT showed multiple ground glass shadows under the pleura of both lungs, mainly in both lower lungs, gradually worsening until "white lung" appeared, with early renal and cardiac insufficiency. In the course of treatment, immunosuppressants were reduced and the dosage of glucocorticoid was increased. In the early stage, due to renal insufficiency and hyperkalemia, dialysis was conducted for 3 times. Oral abidol and Lianhua Qingwen capsule were given as antiviral and anti-infection treatment. Special immunoglobulin and convalescent plasma of COVID-19 were used to boost the immunity of patients. The patient was eventually clinically cured. CONCLUSIONS: The clinical manifestations and diagnosis of COVID-19 for the kidney transplantation recipient are not significantly different from other populations, but immunocompromised hosts are more likely to suffer from organ dysfunction. The adjustment of immunosuppressants and glucocorticoids, respiratory support, selection of antibiotics, organ protection, nutritional support and traditional Chinese medicine intervention in the treatment of renal transplant recipients with severe COVID-19 need further discussion.


Assuntos
COVID-19 , Transplante de Rim , COVID-19/terapia , Glucocorticoides , Humanos , Imunização Passiva , Hospedeiro Imunocomprometido , Imunossupressores , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Soroterapia para COVID-19
20.
Chemosphere ; 290: 133324, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34921857

RESUMO

The photo-Fenton reaction was widely used in the removal of pollutants in waste water, which makes it exhibit great potential in the field of environmental remediation. Hence, it is crucial to explore a new efficient and stable photo-Fenton catalyst driven by visible light. In this work, a simple two-step calcination method was used to synthesize sheet-like stacked Ultra-thin g-C3N4/FeOCl (CNF) materials. The morphology, composition, photo-Fenton performance, and antibacterial properties were systematically analyzed. Research results exhibited that the synthesized CNF catalysts showed enhanced visible light absorption capacity and excellent photo-Fenton performance. Compared with FeOCl alone, CNF displayed stronger degradation ability for rhodamine B (RhB) and could achieve 97% degradation within 9 min, which was about 10 times that of pure FeOCl. At the same time, the composite catalysts exhibited excellent antibacterial effects under photo-Fenton conditions. The antibacterial rate of CNF composite catalyst under photo-Fenton conditions can reach almost 99%, which was 3 times that of photocatalysis alone and 2 times that of Fenton alone. The heterojunction formed between Ultra-thin g-C3N4 and FeOCl promoted the separation of e- and h+. Simultaneously, the presence of e- promoted the cycle of Fe3+ and Fe2+ in FeOCl, thereby promoting the generation of hydroxyl radicals (OH) from H2O2 and improving the photo-Fenton activity to achieve the effect of degrading pollutants and antibacterial. The photo-Fenton catalysis and degradation mechanism were analyzed in detail. This work provided a theoretical basis for the application of CNF material in the removal of wastewater.


Assuntos
Poluentes Ambientais , Nanocompostos , Antibacterianos/farmacologia , Catálise , Peróxido de Hidrogênio , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA