Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964640

RESUMO

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Assuntos
Rosa , Rosa/genética , Rosa/metabolismo , Ácido Ascórbico/metabolismo , Genes de Plantas , Cromossomos , Evolução Molecular
2.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38268490

RESUMO

Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Etanol/metabolismo
3.
J Transl Med ; 21(1): 420, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37381011

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal tumor types worldwide. Glycosylation has shown promise in the study of tumor mechanisms and treatment. The glycosylation status of HCC and the underlying molecular mechanisms are still not fully elucidated. Using bioinformatic analysis we obtained a more comprehensive characterization of glycosylation of HCC. Our analysis presented that high glycosylation levels might correlate with tumor progression and poor prognosis. Subsequent Experiments identified key molecular mechanisms for ST6GALNAC4 promoting malignant progression by inducing abnormal glycosylation. We confirmed the contribution of ST6GALNAC4 to proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies revealed that ST6GALNAC4 may be induced abnormal TGFBR2 glycosylation, resulting in the higher protein levels of TGFBR2 and TGF[Formula: see text] pathway increased activation. Our study also provided a further understand of immunosuppressive function of ST6GALNAC4 through T antigen-galectin3+ TAMs axis. This study has provided one such possibility that galectin3 inhibitors might be an acceptable treatment choice for HCC patients with high T antigen expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sialiltransferases , Humanos , Antígenos Virais de Tumores , Carcinogênese , Carcinoma Hepatocelular/genética , Glicosilação , Neoplasias Hepáticas/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Sialiltransferases/genética
4.
Proc Natl Acad Sci U S A ; 112(3): 702-6, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561539

RESUMO

In the middle-to-late Holocene, Earth's monsoonal regions experienced catastrophic precipitation decreases that produced green to desert state shifts. Resulting hydrologic regime change negatively impacted water availability and Neolithic cultures. Whereas mid-Holocene drying is commonly attributed to slow insolation reduction and subsequent nonlinear vegetation-atmosphere feedbacks that produce threshold conditions, evidence of trigger events initiating state switching has remained elusive. Here we document a threshold event ca. 4,200 years ago in the Hunshandake Sandy Lands of Inner Mongolia, northern China, associated with groundwater capture by the Xilamulun River. This process initiated a sudden and irreversible region-wide hydrologic event that exacerbated the desertification of the Hunshandake, resulting in post-Humid Period mass migration of northern China's Neolithic cultures. The Hunshandake remains arid and is unlikely, even with massive rehabilitation efforts, to revert back to green conditions.

5.
Biochem Biophys Res Commun ; 493(1): 585-591, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867187

RESUMO

Irisin is a newly identified myokine that may be cancer-associated, and its impact on liver cancer is unclear. To understand the roles of irisin in liver cancer, we investigated its effect in HepG2 and SMCC7721 hepatocellular carcinoma cells, and the underlying mechanisms. We determined irisin levels in liver tissues and serum samples obtained from patients by using real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Irisin levels in cancerous livers were significantly upregulated compared with those in control livers, but serum irisin levels remained unchanged. Additionally, we evaluated the effects of different concentrations of human recombinant modified and active (glycosylated) irisin (IM) or human recombinant nonmodified irisin (INM) on cell migration, proliferation, viability, and invasiveness. CCK8, transwell, and scratching assays demonstrated that irisin significantly increased cell proliferation, invasion, and migration through activation of the PI3K/AKT pathway. Irisin-induced cell proliferation, migration, and invasion were blocked by a PI3K inhibitor (LY294002). Irisin also decreased the cytotoxicity of doxorubicin in HepG2 cells. These data indicate that increased irisin levels may have protective roles in liver cancer cells through partial activation of the PI3K/AKT pathway, which may facilitate liver cancer progression and decrease the sensitivity to chemotherapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Fibronectinas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
6.
Front Plant Sci ; 14: 1225436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107006

RESUMO

The characteristics of C:N:P stoichiometry, nonstructural carbohydrate (NSC) content, and C stable isotopes and their relationships affect plant responses to environmental changes and are critical to understanding the ecosystem carbon and water cycles. We investigated the water use strategies and physiological changes of two pioneer tree species (Pinus armandii and Pinus yunnanensis) in response to seasonal drought in subtropical China. The seasonal variation in needle δ13C values, C:N:P stoichiometry, and NSC contents of the two tree species were studied in 25-year-old plantation in central Yunnan Province. The needle δ13C values of both species were highest in summer. Soluble sugars, starch and NSC content of the two tree species decreased from spring to winter, while there was no significant difference in the seasonal variation of soluble sugars/starch in P. armandii needles, the maximum soluble sugars/starch in P. yunnanensis needles was in autumn. In addition, the C, N, and P contents of the needles and the C:N and C:P ratios of the two species showed different seasonal fluctuations, whereas the N:P ratio decreased with the season. The C:N:P stoichiometry and NSC content of the needles showed significant correlations, whereas the needle δ13C was weakly correlated with C:N:P stoichiometry and NSC content. Phenotypic plasticity analysis and principal component analysis revealed that the needle nutrient characteristics (NSC and P contents and N:P ratio) and needle δ13C values were critical indicators of physiological adaptation strategies of P. armandii and P. yunnanensis for coping with seasonal variation. These results increase our understanding of the water-use characteristics of the two pioneer tree species and the dynamic balance between the NSC, C, N, and P contents of the needles.

7.
Adv Sci (Weinh) ; 10(15): e2206669, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994647

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies with poor prognosis, and novel treatment strategies are urgently needed. Mitochondria are key regulators of cellular homeostasis and potential targets for tumor therapy. Here, the role of mitochondrial translocator protein (TSPO) in the regulation of ferroptosis and antitumor immunity is investigated and the potential therapeutic implications for HCC are assessed. TSPO is highly expressed in HCC and associated with poor prognosis. Gain- and loss-of-function experiments present that TSPO promotes HCC cell growth, migration, and invasion in vitro and in vivo. In addition, TSPO inhibits ferroptosis in HCC cells via enhancing the Nrf2-dependent antioxidant defense system. Mechanistically, TSPO directly interacts with P62 and interferes with autophagy, leading to the accumulation of P62. The P62 accumulation competes with KEAP1, preventing it from targeting Nrf2 for proteasomal degradation. Furthermore, TSPO promotes HCC immune escape by upregulating PD-L1 expression through Nrf2-mediated transcription. Notably, TSPO inhibitor PK11195 combines with anti-PD-1 antibody showing a synergistic anti-tumor effect in a mouse model. Overall, the results demonstrated that mitochondrial TSPO promotes HCC progression by inhibiting ferroptosis and antitumor immunity. Targeting TSPO can be a promising new strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte , Evasão da Resposta Imune , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
8.
Clin Transl Med ; 13(10): e1451, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877357

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play a significant role in the initiation and progression of various cancers, including hepatocellular carcinoma (HCC). Circular syntaxin 6 (circSTX6, also known as hsa_circ_0007905) has been identified as a microRNA (miRNA) sponge in pancreatic adenocarcinoma. However, its full range of functions in terms of protein scaffold and translation remain largely unexplored in the context of HCC. METHODS: The expression of circSTX6 and its encoded protein was examined in HCC tumour tissues. N6 -methyladenosine (m6 A) on circSTX6 was verified and quantified by methylated RNA immunoprecipitation (Me-RIP), RIP and dual luciferase reporter assays. The biological functions of circSTX6 and its encoded protein in HCC were clarified by in vitro and in vivo experiments. Mechanistically, the interaction between circSTX6 and heterogeneous nuclear ribonucleoprotein D (HNRNPD) was investigated by RNA pull-down, RIP and fluorescence in situ hybridization (FISH)/IF. The regulatory effects of circSTX6 and HNRNPD on activating transcription factor 3 (ATF3) mRNA were determined by mRNA stability and RIP assays. Furthermore, the presence of circSTX6-encoded protein was verified by mass spectrometry. RESULTS: CircSTX6 and its encoded 144 amino acid polypeptide, circSTX6-144aa, were highly expressed in HCC tumour tissues and served as independent risk factors for overall survival in HCC patients. The expression of circSTX6 was regulated by METTL14 in an m6 A-dependent manner. Functionally, circSTX6 accelerated HCC proliferation and tumourigenicity and reinforced tumour metastasis in vitro and in vivo. Mechanistically, circSTX6 acted as a sponge for HNRNPD protein, facilitating its binding to ATF3 mRNA, consequently promoting ATF3 mRNA decay. Meanwhile, circSTX6-144aa promoted HCC proliferation, migration and invasion independent of circSTX6 itself. CONCLUSION: Collectively, our study reveals that m6 A-modified circSTX6 drives malignancy in HCC through the HNRNPD/ATF3 axis, while its encoded circSTX6-144aa contributes to HCC progression independent of circSTX6. CirSTX6 and its encoded protein hold promise as potential biomarkers and therapeutic targets in HCC.


Assuntos
Fator 3 Ativador da Transcrição , Carcinoma Hepatocelular , Ribonucleoproteínas Nucleares Heterogêneas Grupo D , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Humanos , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Aminoácidos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , RNA Mensageiro , RNA Circular/genética
9.
Cancer Res ; 82(4): 599-614, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34916222

RESUMO

Circular RNAs (circRNA) and N6-methyladenosine (m6A) modification are extensively involved in the progression of diverse tumors, including hepatocellular carcinoma (HCC). However, the cross-talk between circRNAs and m6A remains elusive in the pathogenesis of HCC. Here we investigated m6A-mediated regulation of circRNAs in HCC. m6A-related circRNAs were identified by integrating information from two published studies, revealing circular cleavage and polyadenylation specific factor 6 (circCPSF6) as a novel m6A-modified circRNA. circCPSF6 was dominated by ALKBH5-mediated demethylation, followed by the recognization and destabilization by YTHDF2. Meanwhile, circCPSF6 was upregulated in HCC specimens, and elevated circCPSF6 expression served as an independent prognostic factor for worse survival of patients with HCC. Loss-of-function assays demonstrated that circCPSF6 maintained cell proliferation and tumorigenicity and reinforced cell motility and tumor metastasis. circCPSF6 triggered expression of YAP1, further activating its downstream cascade. Mechanistically, circCPSF6 competitively bound PCBP2, blunting its binding to YAP1 mRNA, thereby sustaining the stability of YAP1. Functionally, removal of YAP1 reversed the effects of circCPSF6 in vitro and in vivo. Aberrant activation of the circCPSF6-YAP1 axis promoted HCC malignancy. These findings offer novel insights into the regulation of circRNAs by m6A modifications and the role of this epigenetic reprogramming in HCC. SIGNIFICANCE: This study advances the understanding of the interplay between m6A methylation and circRNAs in hepatocellular carcinoma, highlighting the potential of circCPSF6 as a therapeutic target.


Assuntos
Adenosina/análogos & derivados , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , RNA Circular/genética , Proteínas de Sinalização YAP/genética , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Metilação , Pessoa de Meia-Idade , Prognóstico , RNA Circular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Sinalização YAP/metabolismo
10.
Front Oncol ; 11: 654689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954113

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a kind of devastating malignancy, which is correlated with the extremely high mortality. Due to the occult pathogenesis of CCA, most patients are diagnosed in the advanced stage. However, the efficacy of chemotherapy and immunotherapy is limited for these patients. The cause for this phenomenon is unclear, the recent researches indicate that it could be related to predisposing genetic factors and tumor microenvironment (TME) changes. The TME is created by the tumor and dominated by tumor-induced interactions. And the tumor prognosis could be influenced by the extent of infiltrating immune cells and stromal cells in TME. MATERIALS AND METHODS: The abundance ratio of immune cells for each sample was obtained via the CIBERSORT algorithm, and we used ESTIMATE score system to calculate the immune and stromal scores in CCA. The CCA cases in TCGA database were categorized into high and low score groups according to their immune/stromal scores. And then, we identified the differential expressed genes (DEGs) in two groups. Functional enrichment analysis and protein-protein interaction networks were carried out for DEGs. Interestingly, we found out that apolipoprotein B (APOB) is the most down-regulated among these genes. Then we performed the immunohistochemistry staining of APOB in a CCA tumor microarray which contained 100 CCA cases, APOB was down-regulated in CCA samples. Thus, we evaluated the APOB function in the TME of CCA through TIMER. RESULTS AND CONCLUSION: The results demonstrate that the infiltration degree of immune cells in CCA could be influenced by the expression of APOB, and the APOB expression could be mediated by DNA methylation. Our study not only indicates APOB is a potential target for CCA immunotherapy but also provides new ideas for researchers to explore the immunotherapy of various tumors.

11.
Cell Death Discov ; 7(1): 315, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707107

RESUMO

The function of the N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein 15 (RBM15) in hepatocellular carcinoma (HCC) has not been thoroughly investigated. Here we determined the clinical value, biological functions, and potential mechanisms of RBM15 in HCC. Expression of RBM15 was identified using tissue microarrays and online databases. A risk-prediction model based on RBM15 was developed and validated. We determined the biological role of RBM15 on HCC cells in vitro and in vivo. RNA sequencing was used to screen candidate targets of RBM15. Subsequently, the m6A dot blot assay, methylated RNA immunoprecipitation qPCR, dual-luciferase reporter assays, RNA decay assay, and RNA immunoprecipitation qPCR were employed to explore the mechanisms of RBM15. Our study showed that RBM15 was highly expressed in HCC, and overexpression of RBM15 indicated a worse outcome. A new nomogram combining RBM15 with age and TNM stage was developed and validated to predict the outcome of HCC patients; our nomogram increased the prediction accuracy of the TNM system. Functionally, RBM15 facilitates the proliferation and invasiveness of HCC. RBM15-mediated m6A modification contributed to a post-transcriptional activation of YES proto-oncogene 1 (YES1) in an insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1)-dependent manner. In addition, YES1 was confirmed as an oncogene in HCC cells by activating the mitogen-activated protein kinase (MAPK) pathway. In conclusion, RBM15-mediated m6A modification might facilitate the progression of HCC via the IGF2BP1-YES1-MAPK axis. RBM15 may be a promising biomarker in the outcome prediction of HCC.

12.
Onco Targets Ther ; 13: 4423-4430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547073

RESUMO

Irisin is a newly discovered exercise-induced cytokine, produced by the proteolytic hydrolysis of fibronectin type III domain-containing protein 5 (FNDC5). Irisin is widely distributed in the human body and is involved in the browning of white adipose tissue, improving insulin resistance, improving cognitive function, and regulating bone metabolism. Recent studies have shown that irisin concentration is elevated in a variety of tumor tissues as compared with that in normal tissues. However, irisin has different effects on the proliferation and apoptosis of tumor cells in breast cancer, lung cancer, and liver cancer through various mechanisms. Irisin plays an important role in the occurrence, development, and metastasis of different tumors, suggesting that irisin can be used as a potential target for tumor diagnosis and treatment. Therefore, studying the expression and function of irisin in tumors may be of great significance for the prevention and treatment of tumors. This article reviews the research progress on the role of irisin in tumors.

13.
Onco Targets Ther ; 12: 7243-7249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564907

RESUMO

INTRODUCTION: Irisin is a newly identified cytokine that has gained increasing attention because of its potential therapeutic applications in metabolic diseases and human cancers. Recently, accumulating evidence indicates that irisin plays an important role in the development and metastasis of various tumors. The aim of this study was to evaluate the effects and underlying mechanisms of irisin on malignant growth of pancreatic cancer cells. MATERIALS AND METHODS: The anti-proliferative effect of irisin was examined using the CCK-8 assay. Irisin-induced apoptosis was determined by the annexin V-FITC/PI staining assay. The effects of irisin on cell migration and invasion were assessed using the scratch-induced wound healing assay and transwell invasion assay, respectively. The expression and phosphorylation of signaling proteins were detected by Western blot analysis. RESULTS: Our results showed that irisin inhibited cell proliferation and induced apoptosis of pancreatic cancer cells in a dose-dependent manner. In addition, irisin decreased the migration and invasion of pancreatic cancer cells. Finally, Western blot analysis revealed that irisin downregulated the PI3K/AKT signaling pathway. CONCLUSION: Our findings suggest that irisin is a novel therapeutic agent for pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA