Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925826

RESUMO

In wireless sensor networks (WSNs), there are many challenges for outlier detection, such as fault detection, fraud detection, intrusion detection, and so on. In this paper, the participation degree of instances in the hierarchical clustering process infers the relationship between instances. However, most of the existing algorithms ignore such information. Thus, we propose a novel fault detection technique based on the participation degree, called fault detection based on participation degree (FDP). Our algorithm has the following advantages. First, it does not need data training in labeled datasets; in fact, it uses the participation degree to measure the differences between fault points and normal points without setting distance or density parameters. Second, FDP can detect global outliers without local cluster influence. Experimental results demonstrate the performance of our approach by applying it to synthetic and real-world datasets and contrasting it with four well-known techniques: isolation forest (IF), local outlier factor (LOF), one-class support vector machine (OCS), and robust covariance (RC).

2.
Sensors (Basel) ; 18(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734718

RESUMO

We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

3.
IEEE Trans Cybern ; 53(7): 4619-4629, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34910659

RESUMO

Realistic epidemic spreading is usually driven by traffic flow in networks, which is not captured in classic diffusion models. Moreover, the progress of a node's infection from mild to severe phase has not been particularly addressed in previous epidemic modeling. To address these issues, we propose a novel traffic-driven epidemic spreading model by introducing a new epidemic state, that is, the severe state, which characterizes the serious infection of a node different from the initial mild infection. We derive the dynamic equations of our model with the tools of individual-based mean-field approximation and continuous-time Markov chain. We find that, besides infection and recovery rates, the epidemic threshold of our model is determined by the largest real eigenvalue of a communication frequency matrix we construct. Finally, we study how the epidemic spreading is influenced by representative distributions of infection control resources. In particular, we observe that the uniform and Weibull distributions of control resources, which have very close performance, are much better than the Pareto distribution in suppressing the epidemic spreading.


Assuntos
Epidemias , Cadeias de Markov , Comunicação , Difusão
4.
Interdiscip Sci ; 9(4): 550-555, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948531

RESUMO

The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.


Assuntos
Algoritmos , Som , Humanos , Aprendizado de Máquina , Ronco
5.
Interdiscip Sci ; 6(3): 216-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25205499

RESUMO

Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed.


Assuntos
Diagnóstico por Computador/métodos , Ronco , Som , Acústica , Metodologias Computacionais , Apneia Obstrutiva do Sono/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA