Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Small ; : e2404124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016131

RESUMO

Electrochemical upcycling of nitrate and polyester plastic into valuable products is an ideal solution to realize the resource utilization. Here, the co-production of ammonia (NH3) and glycolic acid (GA) via electrochemical upcycling of nitrate and polyethylene terephthalate (PET) plastics over mesoporous Pd3Au film on Ni foam (mPd3Au/NF), which is synthesized by micelle-assisted replacement method, is proposed. The mPd3Au/NF with well-developed mesoporous structure provides abundant active sites and facilitated transfer channels and strong electronic effect. As such, the mPd3Au/NF exhibits high Faraday efficiencies of 97.28% and 95.32% at 0.9 V for the formation of NH3 and GA, respectively. Theoretical results indicate that the synergistic effect of Pd and Au can optimize adsorption energy of key intermediates *NOH and *OCH2-CH2OH on active sites and increase bond energy of C─C band, thereby improving the activity and selectivity for the formation of NH3 and GA. This work proposes a promising strategy for the simultaneous conversation of nitrate and PET plastic into high-value NH3 and GA.

2.
Inorg Chem ; 63(6): 3099-3106, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299496

RESUMO

Electrochemical conversion of nitrogen into ammonia at ambient conditions as a sustainable approach has gained significant attention, but it is still extremely challenging to simultaneously obtain a high faradaic efficiency (FE) and NH3 yield. In this work, the interstitial boron-doped porous Pd nanotubes (B-Pd PNTs) are constructed by combining the self-template reduction method with boron doping. Benefiting from distinctive one-dimensional porous nanotube architectonics and the incorporation of the interstitial B atoms, the resulting B-Pd PNTs exhibit high NH3 yield (18.36 µg h-1 mgcat.-1) and FE (21.95%) in neutral conditions, outperforming the Pd/PdO PNTs (10.4 µg h-1 mgcat.-1 and 8.47%). The present study provides an attractive method to enhance the efficiency of the electroreduction of nitrogen into ammonia by incorporating interstitial boron into porous Pd-based catalysts.

3.
Nanotechnology ; 35(22)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387087

RESUMO

Replacing the slow oxygen evolution reaction with favorable hydrazine oxidation reaction (HzOR) is a green and efficient way to produce hydrogen. In this work, we synthesize amorphous/crystalline RhFeP metallene via phase engineering and heteroatom doping. RhFeP metallene has good catalytic activity and stability for HER and HzOR, and only an ultralow voltage of 18 mV is required to achieve 10 mA cm-2in a two-electrode hydrazine-assisted water splitting system. The superior result is mainly ascribed to the co-doping of Fe and P and the formation of amorphous/crystalline RhFeP metallene with abundant phase boundaries, thereby adjusting electronic structure and increasing active sites.

4.
Small ; 19(52): e2306014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635098

RESUMO

2D metallene possess high surface area and excellent electron transport capability, thus enabling efficient application in oxygen reduction reaction (ORR). However, the interface regulation and electronic structure optimization of metallene are still great challenges. Herein, Pd-B/Pd hetero-metallene is constructed by interface engineering and B modification strategies for efficient electrocatalytic ORR. The 2D configuration of Pd-B/Pd hetero-metallene exposes a large number of surface atoms and unsaturated defect sites, thus providing abundant catalytic active sites and exhibiting high electron mobility. More importantly, interface engineering and B modification synergistically optimizing the electronic configuration of the metallene system. This work not only provides an effective strategy for the rational regulation of the electronic configuration of metallene, but also offers a reference for the construction of efficient ORR catalysts.

5.
Small ; 19(25): e2300388, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932943

RESUMO

Metallene with outstanding physicochemical properties is an efficient two-dimensional electrocatalysts for sustainable hydrogen (H2 ) production applications. However, the controllable fabrication of extended atomically thin metallene nanoribbons remains a formidable challenge. Herein, this work proposes a controllable preparation strategy for atomically thin defect-rich PdIr bimetallene nanoribbons (PdIr BNRs) with a thickness of only 1.5 nm for the efficient and stable isopropanol-assisted seawater electrolytic H2 production. When using PdIr BNRs as catalyst to build an isopropanol-assisted seawater electrolysis system, a voltage of only 0.38 V is required at @10 mA cm-2 to achieve energy-saving H2 production, while producing high value-added acetone at the anode. The aberration-corrected high-resolution transmission electron microscopy (HRTEM) clearly reveals that the PdIr BNRs possess abundant structural defects, which can additionally serve as highly catalytically active sites. Density functional theory (DFT) calculations combined with X-ray absorption spectroscopy studies reveal that the introduction of Ir atoms can induce the formation of a localized charge region and shift the d-band center of Pd down, thereby reducing the adsorption energy on the catalyst in favor of the rapid desorption of H2 . This work opens the way for the controllable design and construction of defect-rich atomically thin metallene nanoribbons for efficient electrocatalytic applications.

6.
Inorg Chem ; 62(14): 5622-5629, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36964752

RESUMO

Engineering two-dimensional (2D) metallic nanomaterials has attracted numerous research interests for oxygen reduction reaction (ORR) due to their highly exposed unsaturated metal atoms and excellent physicochemical properties. Herein, we report a CO-confined growth strategy for the synthesis of 2D PdCu bimetallene with several atomic layers for ORR. The incorporation of Cu into Pd metallene can generate strain effect and change the electronic structure, weakening the interaction between Pd and CO and suppressing the adsorption of CO. Therefore, the synthesized PdCu bimetallene exhibits remarkable catalytic performance for alkaline ORR, with mass and specific activities of 0.82 A mgPd-1 and 1.01 mA cm-2, which are 5.1 and 3.7 times those for Pt/C, respectively. Meanwhile, the PdCu bimetallene shows no decrease in ORR activity after 5000 cycles. This work highlights the design of ultrathin bimetallic 2D nanomaterials for efficient ORR electrocatalysis.

7.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628193

RESUMO

Pulmonary fibrosis therapy is limited by the unclear mechanism of its pathogenesis. C57BL/6 mice were used to construct the pulmonary fibrosis model in this study. The results showed that Men1, which encodes menin protein, was significantly downregulated in bleomycin (BLM)-induced pulmonary fibrosis. Mice were made to overexpress or had Men1 knockdown with adeno-associated virus (AAV) infection and then induced with pulmonary fibrosis. BLM-induced pulmonary fibrosis was attenuated by Men1 overexpression and exacerbated by Men1 knockdown. Further analysis revealed the distinct roles of Men1 in fibroblasts and macrophages. Men1 inhibited fibroblast activation and extracellular matrix (ECM) protein expression while promoting macrophages to be profibrotic (M2) phenotype and enhancing their migration. Accordingly, pyroptosis was potentiated by Men1 in mouse peritoneal macrophages (PMCs) and lung tissues upon BLM stimulation. Furthermore, the expression of profibrotic factor OPN was positively regulated by menin in Raw264.7 cells and lung tissues by binding to the OPN promoter region. Taken together, although Men1 showed antifibrotic properties in BLM-induced pulmonary fibrosis mice, conflictive roles of Men1 were displayed in fibroblasts and macrophages. The profibrotic role of Men1 in macrophages may occur via the regulation of macrophage pyroptosis and OPN expression. This study extends the current pathogenic understanding of pulmonary fibrosis.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Proteínas Proto-Oncogênicas , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Fibroblastos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo
8.
Chemistry ; 27(58): 14472-14477, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34328663

RESUMO

The optimization of structure and composition is essential to improve the performance of catalysts. Herein, mesoporous nanoparticles assembled PdNi/Ni nanotubes (mPdNi/Ni NTs) are successfully fabricated using nickel nanowires as sacrificial template. The combination of nanotubular structure with mesoporous nanoparticle morphology can provide facilitated transfer channels and sufficient active sites, allowing the full contact and reaction between catalysts and reactants. Therefore, the synthesized mPdNi/Ni NTs exhibite superior ethanol oxidation performance to mesoporous Pd nanotubes and commercial Pd black. This study proposes a rational strategy for the development of nanoparticle assembled nanotubes with surface mesoporous morphology, which can greatly improve catalytic performance in various electrocatalytic fields.

9.
Chem Commun (Camb) ; 59(69): 10440-10443, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37555323

RESUMO

In this work, we synthesize P-doped Ir metallene (P-Ir metallene) with rich defects as a highly active bifunctional catalyst towards the hydrogen evolution reaction and oxygen evolution reaction, requiring overpotentials of 28 and 279 mV to drive 10 mA cm-2 in 0.5 M H2SO4, respectively. Moreover, P-Ir metallene exhibits excellent electrocatalytic performance for overall water splitting, producing hydrogen at 10 mA cm-2 with a low operation voltage of 1.508 V. This study proposes the incorporation of phosphorus into noble metals to improve the electrocatalytic performance for water splitting.

10.
ACS Appl Mater Interfaces ; 15(3): 3961-3973, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36637003

RESUMO

Defects at the interface of charge transport layers can cause severe charge accumulation and poor charge transferability, which greatly affect the efficiency and stability of stannic oxide (SnO2)-based perovskite solar cells (PSCs). Herein, a new type of MXene (Nb2CTx-MXene) is applied to the interface of SnO2 layers to passivate the interfacial defects and promote charge transport. Nb2CTx-MXene in PSCs realizes the role of boosting the conductivity, reducing the tin vacancies in the interstitial void of the SnO2 layer, decreasing the defect density, and aligning the bandgap. Afterward, Nb2CTx-MXene is decorated with gold nanospheres, which has the ability to modulate the tensile strain of perovskites and suppress the Auger recombination. Eventually, the Au@Nb2CTx-MXene-modified device yields an excellent power conversion efficiency (PCE) of 23.78% with a relatively high open-circuit voltage of 1.215 V (Eg ∼ 1.60 eV). The unencapsulated devices maintain 90% of their initial PCE values after storage in the air with a relative humidity of 40% for 1000 h and remain above 80% of their initial efficiency after operation at the maximum power point for 500 h under 1 sun illumination. Our work provides an avenue to fabricate high-efficiency and stable PSCs with MXene adapting to commercial development.

11.
J Cancer ; 13(6): 2001-2013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399714

RESUMO

With significant high incidence and death rates, liver cancer has become one of the most common cancers all over the world. Hence, novel strategies are needed for the management of this malignancy. Apoptotic related proteins Noxa and Puma are the members of BH3-only family. In this study, human Noxa or Puma coding sequences have been inserted into plasmid pcDNA 3.1 regulated by human TERT promoter. The transfection of HepG2 cells with pcTERT-Noxa or pcTET-Puma resulted in the significant suppression of cell proliferation as well as finally led to apoptosis via mitochondrial and death receptor pathways, and also exhibited significantly reduced the ability of invasion and metastasis. Moreover, an in vivo study revealed that intratumoral injections of pcTERT-Noxa or pcTERT-Puma plasmids effectively suppressed the tumor growth and can exhibit anti-neoplastic effects by recruiting CD3, CD8, CD45 positive T lymphocytes in the tumor tissues. Overall, our findings illustrated that pcTERT-Noxa and pcTERT-Puma may exhibit significant anti-tumor effects both in vivo and in vivo.

12.
ACS Appl Mater Interfaces ; 13(24): 28057-28063, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34107676

RESUMO

Electrocatalytic nitrogen reduction is a promising strategy to produce ammonia with low energy consumption and an ambient operation condition. Owing to extreme difficulties in nitrogen activation, the design of high-efficiency electrocatalysts is still a great challenge. This work proposes a versatile electrodeposition strategy to construct P, S-codoped Au mesoporous film on carbon paper (mAuPS/CP) using polystyrene-b-poly (ethylene oxide) micelles as surfactants. The continuous mesoporous structure and nonmetal element doping can change the electronic structure and provide sufficient active sites, leading to enhanced N2 adsorption and reduced hydrogen evolution reaction (HER) process. Expectedly, the mAuPS/CP exhibits superior performance [NH3 yield: 58.2 µg h-1 mg-1cat.; Faradaic efficiency (FE): 25.7%] to the counterpart without doping in a neutral electrolyte. This research offers an ingenious method to directly synthesize P, S-codoped mesoporous noble metals for effective ammonia electrosynthesis.

13.
Bioengineered ; 12(2): 12708-12721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898368

RESUMO

Liver cancer is an aggressive malignancy with exhibits both high mortality and morbidity. The current treatment options are associated with several limitations, novel specific anti-cancer drugs are urgently needed to improve liver cancer treatment. In this study, a new peptide KK-64 was designed, and it showed strong cytotoxicity against liver cancer cells. To obtain the tumor targeting property, a plasmid that contains KK-64 DNA fragment and driven by human telomerase reverse transcriptase (hTERT) promoter was constructed. pcTERT-kk-64 plasmid was found to specifically inhibit the viability of liver cancer cells HepG2, induce substantial apoptosis as well as damage to the cell membranes, but had minimal effects toward normal liver HL-7702 cells. Furthermore, pcTERT-kk-64 plasmids was also noted to significantly attenuate migration and invasion of HepG2 cells. The anti-tumor effect of pcTERT-kk-64 plasmid was also observed in H22 cell-bearing mice, and it appeared to cause significant tumor regression, trigger tumor cell apoptosis, and infiltrate cytotoxicity T cells to the tumor tissues after plasmids injection. Thus, pcTERT-kk-64 plasmids showed both strong cytotoxicity and tumor selectivity in vitro and in tumor-bearing mice in liver cancer models.


Assuntos
Membrana Celular/patologia , Terapia Genética , Neoplasias Hepáticas/terapia , Peptídeos/uso terapêutico , Regiões Promotoras Genéticas , Linfócitos T/imunologia , Telomerase/genética , Animais , Apoptose , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/genética , Proliferação de Células , Humanos , Masculino , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Peptídeos/química , Plasmídeos/metabolismo , Estrutura Secundária de Proteína
14.
ACS Appl Mater Interfaces ; 13(17): 20233-20239, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33884861

RESUMO

Designing one-dimensional (1D) bimetallic nanomaterials is of great significance for electrochemical nitrogen fixation. Inspired by this, 1D AuPd nanospikes (AuPd NSs) composed with internal Au nanowire and external Pd nanohumps were fabricated by a flexible low-temperature wet-chemical method. Benefiting from the excellent electron transport efficiency of the 1D material and the accessible surface area provided by the unique nanospike-like structure, AuPd NSs exhibit outstanding nitrogen reduction reaction performance with an NH3 yield rate of 16.9 µg h-1 mg-1cat. and a Faradaic efficiency of 15.9% at -0.3 V under 0.1 M Na2SO4. This work not only provides an effective electrocatalyst for nitrogen fixation technology, but also presents a flexible method for the controlled synthesis of spike-like nanomaterials.

15.
Nanoscale ; 12(37): 19159-19164, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32944727

RESUMO

Adjusting the morphology and composition of Pd-based materials is a promising strategy to improve their performance for the electrocatalytic formic acid oxidation reaction (FAOR). In this work, we report the preparation of B-doped PdRu nanopillar assemblies (B-PdRu NPAs) by a two-step method using NaBH4 as the boron dopant. On combining the hyper-branched structure and the multi-component synergistic effect, B-PdRu NPAs achieve a high mass activity of 1.09 mA µg-1Pd for the FAOR and retain 73.19% of the initial activity after 500 cycles, which is superior to undoped counterparts. The proposed synthesis strategy provides a simple method for the synthesis of metal-nonmetal nanomaterials with desired composition and design structure for electrocatalytic fields.

16.
Chem Commun (Camb) ; 56(88): 13595-13598, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057514

RESUMO

Herein, a two-step method is proposed to synthesize bunched RhTe nanochains (RhTe NCs) using Te nanowires and formic acid both as a reductant and a structure-directing agent. The resultant RhTe NCs possess a high electrochemical active surface area of 89.3 m2 gRh-1, and exhibit superior catalytic activity and durability towards the electro-oxidation of methanol in an alkaline medium.

17.
Nanoscale ; 12(25): 13507-13512, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32555854

RESUMO

Electrochemical nitrogen reduction reaction (NRR) provides a facile and sustainable route to synthesize ammonia. The preparation of efficient and high-performance catalysts is one of the most important issues in large-scale applications of the electrochemical synthesis of ammonia. Herein, we have devised a simple method to fabricate three-dimensional palladium-silver-sulphur porous nanosponges (Pd-Ag-S PNSs) under room temperature. The porous network can provide more active sites and accessible channels for the reaction species. The incorporation of sulfur reduces the energy barrier of NRR and promotes the nitrogen hydrogenation to ammonia. Intrinsically, the Pd-Ag-S PNSs demonstrates a superior NRR performance with an NH3 yield of 9.73 µg h-1 mg-1cat. and a faradaic efficiency of 18.41% at -0.2 V, superior to those of the undoped Pd-Ag PNSs. The design of the three-dimensional metallic nanosponges with the doping of nonmetallic elements is a highly valuable strategy for NRR and other electrocatalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA