RESUMO
Immune evasion and metabolism reprogramming have been regarded as two vital hallmarks of the mechanism of carcinogenesis. Thus, targeting the immune microenvironment and the reprogrammed metabolic processes will aid in developing novel anti-cancer drugs. In recent decades, herbal medicine has been widely utilized to treat cancer through the modulation of the immune microenvironment and reprogrammed metabolic processes. However, labor-based herbal ingredient screening is time consuming, laborious and costly. Luckily, some computational approaches have been proposed to screen candidates for drug discovery rapidly. Yet, it has been challenging to develop methods to screen drug candidates exclusively targeting specific pathways, especially for herbal ingredients which exert anti-cancer effects by multiple targets, multiple pathways and synergistic ways. Meanwhile, currently employed approaches cannot quantify the contribution of the specific pathway to the overall curative effect of herbal ingredients. Hence, to address this problem, this study proposes a new computational framework to infer the contribution of the immune microenvironment and metabolic reprogramming (COIMMR) in herbal ingredients against human cancer and specifically screen herbal ingredients targeting the immune microenvironment and metabolic reprogramming. Finally, COIMMR was applied to identify isoliquiritigenin that specifically regulates the T cells in stomach adenocarcinoma and cephaelin hydrochloride that specifically targets metabolic reprogramming in low-grade glioma. The in silico results were further verified using in vitro experiments. Taken together, our approach opens new possibilities for repositioning drugs targeting immune and metabolic dysfunction in human cancer and provides new insights for drug development in other diseases. COIMMR is available at https://github.com/LYN2323/COIMMR.
Assuntos
Antineoplásicos , Neoplasias , Plantas Medicinais , Humanos , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Linfócitos T , Medicina Herbária , Microambiente TumoralRESUMO
With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Perfilação da Expressão Gênica , TranscriptomaRESUMO
SUMMARY: The burgeoning high-throughput technologies have led to a significant surge in the scale of pharmacotranscriptomic datasets, especially for oncology. Signature search methods (SSMs), utilizing oncogenic signatures formed by differentially expressed genes through sequencing, have been instrumental in anti-cancer drug screening and identifying mechanisms of action without relying on prior knowledge. However, various studies have found that different SSMs exhibit varying performance across pharmacotranscriptomic datasets. In addition, the size of the oncogenic signature can also significantly impact the result of drug repurposing. Therefore, finding the optimal SSMs and customized oncogenic signature for a specific disease remains a challenge. To address this, we introduce Signature Search Polestar (SSP), a webserver integrating the largest pharmacotranscriptomic datasets of anti-cancer drugs from LINCS L1000 with five state-of-the-art SSMs (XSum, CMap, GSEA, ZhangScore, XCos). SSP provides three main modules: Benchmark, Robustness, and Application. Benchmark uses two indices, Area Under the Curve and Enrichment Score, based on drug annotations to evaluate SSMs at different oncogenic signature sizes. Robustness, applicable when drug annotations are insufficient, uses a performance score based on drug self-retrieval for evaluation. Application provides three screening strategies, single method, SS_all, and SS_cross, allowing users to freely utilize optimal SSMs with tailored oncogenic signature for drug repurposing. AVAILABILITY AND IMPLEMENTATION: SSP is free at https://web.biotcm.net/SSP/. The current version of SSP is archived in https://doi.org/10.6084/m9.figshare.26524741.v1, allowing users to directly use or customize their own SSP webserver.
Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Software , Reposicionamento de Medicamentos/métodos , Humanos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Biologia Computacional/métodosRESUMO
Hydroxylamine (NH2OH) is a critical precursor of nitrous oxide (N2O) and key intermediate in the nitrogen cycle. However, the conversion of NH2OH is very fast, and the lack of real-time 15N analytical methods for NH2OH hinders the on-time capture of its biochemical signals in the N cycle. To bridge this gap, we developed a novel approach for real-time determination of 15N-enriched NH2OH. In this approach, an automated sample inlet unit was coupled to a membrane-inlet mass spectrometer, and NH2OH was converted to N2O by sodium hypochlorite for analysis. The interference of carbon dioxide was successfully removed by an ascarite trap, and the N2O signal showed good linearity over the targeted NH2OH concentrations. The limit of detection and limit of quantification of this approach were 0.38 and 1.28 µM, respectively, and 15N enrichment can be accurately detected when the 15N enrichment is higher than 5 atom %. This approach provides a first online analytical tool to capture real-time NH2OH transforming signals using the 15N tracing technique, which will advance mechanism studies of the N cycle.
RESUMO
The stability of microbial communities, especially among core taxa, is essential for supporting plant health. However, the impacts of disease infection on the stability of rhizosphere fungal core microbiome remain largely unexplored. In this study, we delved into the effects of root rot infestation on the community structure, function, network complexity, and stability of Sanqi fungal core microbiomes, employing amplicon sequencing combined with co-occurrence network and cohesion analyses. Our investigation revealed that root rot disease led to a decrease in the α-diversity but an increase in the ß-diversity of the Sanqi fungal core microbiomes in the rhizosphere. Notably, Ilyonectria, Plectosphaerella, and Fusarium emerged as indicator species in the rhizosphere core microbiome of root rot-infected Sanqi plants, while Mortierella predominated as the dominant biomarker taxa in healthy soils. Additionally, root rot diminished the complexity and modularity of the rhizosphere networks by reducing the metrics associated with nodes, edges, degrees, and modularity. Furthermore, root rot resulted in a reduction in the proportion of negative connections in the network and the negative/positive cohesion of the entire core fungal microbiome. Particularly noteworthy was the observation that root rot infection destabilized the rhizosphere core fungal microbiome by weakening the negative connectivity associated with beneficial agents. Collectively, these results highlight the significance of the negative connectivity of beneficial agents in ensuring the stability of core microbial community.IMPORTANCERoot rot disease has been reported as the most devastating disease in the production process of artificial cultivated Sanqi ginseng, which seriously threatens the Sanqi industry. This study provides valuable insights into how root rot influences microbial relationships within the community. These findings open up opportunities for disease prevention and the promotion of plant health by regulating microbial interactions. In summary, the research sheds light on the ecological consequences of root rot on rhizosphere fungal microbiomes and offers potential strategies for managing soil-borne diseases and enhancing plant health.
Assuntos
Medicamentos de Ervas Chinesas , Micobioma , Microbiologia do Solo , Rizosfera , Fungos , Raízes de Plantas/microbiologia , Solo/químicaRESUMO
Soil organic nitrogen (N) mineralization not only supports ecosystem productivity but also weakens carbon and N accumulation in soils. Recalcitrant (mainly mineral-associated organic matter) and labile (mainly particulate organic matter) organic materials differ dramatically in nature. Yet, the patterns and drivers of recalcitrant (MNrec) and labile (MNlab) organic N mineralization rates and their consequences on ecosystem N retention are still unclear. By collecting MNrec (299 observations) and MNlab (299 observations) from 57 15N tracing studies, we found that soil pH and total N were the master factors controlling MNrec and MNlab, respectively. This was consistent with the significantly higher rates of MNrec in alkaline soils and of MNlab in natural ecosystems. Interestingly, our analysis revealed that MNrec directly stimulated microbial N immobilization and plant N uptake, while MNlab stimulated the soil gross autotrophic nitrification which discouraged ammonium immobilization and accelerated nitrate production. We also noted that MNrec was more efficient at lower precipitation and higher temperatures due to increased soil pH. In contrast, MNlab was more efficient at higher precipitation and lower temperatures due to increased soil total N. Overall, we suggest that increasing MNrec may lead to a conservative N cycle, improving the ecosystem services and functions, while increasing MNlab may stimulate the potential risk of soil N loss.
Assuntos
Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Nitrogênio/metabolismo , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Nitrificação , Ciclo do NitrogênioRESUMO
Identifying tipping points in the relationship between aridity and gross nitrogen (N) cycling rates could show critical vulnerabilities of terrestrial ecosystems to climate change. Yet, the global pattern of gross N cycling response to aridity across terrestrial ecosystems remains unknown. Here, we collected 14,144 observations from 451 15 N-labeled studies and used segmented regression to identify the global threshold responses of soil gross N cycling rates and soil process-related variables to aridity index (AI), which decreases as aridity increases. We found on a global scale that increasing aridity reduced soil gross nitrate consumption but increased soil nitrification capacity, mainly due to reduced soil microbial biomass carbon (MBC) and N (MBN) and increased soil pH. Threshold response of gross N production and retention to aridity was observed across terrestrial ecosystems. In croplands, gross nitrification and extractable nitrate were inhibited with increasing aridity below the threshold AI ~0.8-0.9 due to inhibited ammonia-oxidizing archaea and bacteria, while the opposite was favored above this threshold. In grasslands, gross N mineralization and immobilization decreased with increasing aridity below the threshold AI ~0.5 due to decreased MBN, but the opposite was true above this threshold. In forests, increased aridity stimulated nitrate immobilization below the threshold AI ~1.0 due to increased soil C/N ratio, but inhibited ammonium immobilization above the threshold AI ~1.3 due to decreased soil total N and increased MBC/MBN ratio. Soil dissimilatory nitrate reduction to ammonium decreased with increasing aridity globally and in forests when the threshold AI ~1.4 was passed. Overall, we suggest that any projected increase in aridity in response to climate change is likely to reduce plant N availability in arid regions while enhancing it in humid regions, affecting the provision of ecosystem services and functions.
Assuntos
Compostos de Amônio , Ecossistema , Solo , Nitratos , Nitrogênio/análise , Microbiologia do SoloRESUMO
BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS virus (SFTSV) is transmitted by tick bites and contact with the blood or body fluids of SFTS patients. Animal-to-human transmission of SFTS has been reported in Japan, but not in China. In this study, the possible transmission route of two patients who fed and cared for farm-raised fur animals in a mink farm was explored. METHOD: An epidemiological investigation and a genetic analysis of patients, animals and working environment were carried out. RESULTS: It was found that two patients had not been bitten by ticks and had no contact with patients infected with SFTS virus, but both of them had skinned the dying animals. 54.55% (12/22) of the farm workers were positive for SFTS virus antibody. By analyzing the large, medium and small segments sequences, the viral sequences from the two patients, animals and environments showed 99.9% homology. CONCLUSION: It is suspected that the two patients may be directly infected by farm-raised animals, and that the virus may have been transmitted by aerosols when skinning dying animals. Transmission by direct blood contacts or animal bites cannot be ignored.
Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Humanos , Anticorpos Antivirais/sangue , China/epidemiologia , Fazendeiros , Fazendas , Vison/virologia , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Phlebovirus/classificação , Filogenia , RNA Viral/genética , Febre Grave com Síndrome de Trombocitopenia/transmissão , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/epidemiologiaRESUMO
Globally, agricultural soils account for approximately one-third of anthropogenic emissions of the potent greenhouse gas and stratospheric ozone-depleting substance nitrous oxide (N2O). Emissions of N2O from agricultural soils are affected by a number of global change factors, such as elevated air temperatures and elevated atmospheric carbon dioxide (CO2). Yet, a mechanistic understanding of how these climatic factors affect N2O emissions in agricultural soils remains largely unresolved. Here, we investigate the soil N2O emission pathway using a 15N tracing approach in a nine-year field experiment using a combined temperature and free air carbon dioxide enrichment (T-FACE). We show that the effect of CO2 enrichment completely counteracts warming-induced stimulation of both nitrification- and denitrification-derived N2O emissions. The elevated CO2 induced decrease in pH and labile organic nitrogen (N) masked the stimulation of organic carbon and N by warming. Unexpectedly, both elevated CO2 and warming had little effect on the abundances of the nitrifying and denitrifying genes. Overall, our study confirms the importance of multifactorial experiments to understand N2O emission pathways from agricultural soils under climate change. This better understanding is a prerequisite for more accurate models and the development of effective options to combat climate change.
Assuntos
Gases de Efeito Estufa , Solo , Solo/química , Dióxido de Carbono/análise , Temperatura , Agricultura , Óxido Nitroso/análiseRESUMO
Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and ß-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.
Assuntos
Ecossistema , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Florestas , Carbono , Fósforo/metabolismoRESUMO
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
Assuntos
Alnus , Folhas de Planta , Nitrogênio/metabolismo , Árvores , Fixação de Nitrogênio , Solo/químicaRESUMO
OBJECTIVE: Frailty and hypoproteinaemia are common in older individuals. Although there is evidence of a correlation between frailty and hypoproteinaemia, the relationship between frailty and hypoproteinaemia in hospitalized/critically ill and older community residents has not been clarified. Therefore, the aim of our meta-analysis was to evaluate the associations between frailty and hypoproteinaemia in different types of patients. METHODS: A systematic retrieval of articles published in the PubMed, Embase, Medline, Web of Science, Cochrane, Wanfang, and CNKI databases from their establishment to April 2024 was performed to search for studies on the associations between severity of frailty or prefrailty and hypoproteinaemia in older adults. The NewcastleâOttawa Scale and the Agency for Healthcare Research and Quality Scale were used to assess study quality. RESULTS: Twenty-two studies were included including 90,351 frail older people were included. Meta-analysis revealed an association between frailty or prefrailty and hypoproteinaemia (OR = 2.37, 95% CI: 1.47, 3.83; OR = 1.62, 95% CI: 1.23, 2.15), there was no significant difference in the risk of hypoproteinaemia between patients with severe frailty and those with low or moderate frailty (OR = 0.62, 95% CI:0.44, 0.87). The effect of frailty on the occurrence of hypoproteinaemia was more obvious in hospitalized patients/critically ill patients than in surgical patients (OR = 3.75, 95% CI: 2.36, 5.96), followed by older community residents (OR = 2.30, 95% CI: 1.18, 4.49). CONCLUSION: Frailty is associated with hypoproteinaemia in surgical patients, hospitalized older patients and older community residents. Future studies should focus on the benefits of albumin supplementation in preventing or alleviating frailty and related outcomes in the future.
Assuntos
Idoso Fragilizado , Fragilidade , Hipoproteinemia , Humanos , Idoso , Fragilidade/epidemiologia , Fragilidade/diagnóstico , Hipoproteinemia/epidemiologia , Hipoproteinemia/sangue , Hipoproteinemia/diagnóstico , Idoso de 80 Anos ou mais , Hospitalização/tendênciasRESUMO
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
Assuntos
Proteínas de Insetos , Larva , Mariposas , Animais , Mariposas/imunologia , Mariposas/genética , Mariposas/microbiologia , Mariposas/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Bacillus thuringiensis , Beauveria/fisiologia , Peptídeos Antimicrobianos/genética , Pupa/crescimento & desenvolvimento , Interferência de RNARESUMO
Copolymers with precise compositions and controlled sequences are great appealing for high-performance polymeric materials, but their synthesis is very challenging. In this study, tetrakis[tris(dimethylamino)phosphoranylidenamino] phosphonium chloride (P5Cl) and triethylboron (TEB) were chosen as the binary catalyst to synthesize both well-defined block and truly random poly(ester-carbonate) copolymers via the one-pot/one-step terpolymerization of epoxide/anhydride/CO2 under metal-free conditions. The bulky nature of phosphazenium cation not only led to loose cation-anion pairs and enhanced the reactivity, but also provided the chain-end an appropriate protection and improved the controllability. In particular, P5Cl/TEB with a molar ratio of 1/0.5 showed an extraordinary chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CHO/CO2. Thus, well-defined block polyester-polycarbonate copolymers were synthesized by CHO/PA/CO2 terpolymerization. The chemoselectivity was easily tuned and the ROAC of CHO/PA and ROAC of CHO/CO2 occurred simultaneously with P5Cl/TEB = 1/2, producing truly random poly(ester-carbonate) copolymers from CHO/PA/CO2. In addition, this P5Cl/TEB catalyst and the strategy to regulate its chemoselectivity are versatile for various anhydrides, epoxides and initiators. Thus, poly(ester-carbonate) copolymers with varying sequences, compositions, and topologies are successfully synthesized, making it possible to compare their properties and to expand their applications.
RESUMO
The host-associated microbiome highly determines plant health. Available organic resources, such as food for microbes, are important in shaping microbial community structure and multifunctionality. However, how using organic resources precisely manipulates the soil microbiome and makes it supportive of plant health remains unclear. Here, we experimentally tested the influence of carbon resource diversity on the microbial trophic network and pathogen invasion success in a microcosm study. We further explored how resource diversity affects microbial evenness, community functions, and plant disease outcomes in systems involving tomato plants and the in vivo soil microbiome. Increasing available resource diversity altered trophic network architecture, increased microbial evenness, and thus increased the certainty of successful pathogen control. By contrast, the invasion resistance effects of low resource diversity were less effective and highly varied. Accordingly, increases in the evenness and connection of dominant species induced by high resource diversity significantly contributed to plant disease suppression. Furthermore, high carbohydrate diversity upregulated plant immune system regulation-related microbial functions. Our results deepen the biodiversity-invasion resistance theory and provide practical guidance for the control of plant pathogens and diseases by using organic resource-mediated approaches, such as crop rotation, intercropping, and organic amendments.
Assuntos
Biodiversidade , Carbono , Plantas , Consórcios Microbianos , Solo , Microbiologia do SoloRESUMO
We report on the realization of long-haul and high-precision millimeter-wave (mm-wave) transfer through a fiber-optic link based on balanced dual-heterodyne phase noise detection. The balanced dual-heterodyne detection is achieved by detecting the fiber phase noise superimposed two intermediate frequency (IF) signals without requiring a local synchronization signal and its output is used to compensate the fiber-induced phase noise by actuating the frequency of the one optical carrier. The proposed scheme can effectively get rid of the effect of the local reference, largely simplifying the configuration at the local site. Additionally, we model and experimentally study the noise contribution coming from the out-of-band, which can be effectively suppressed to the below of the system noise floor with a fractional frequency instability of 1.9 × 10-17 at 10,000 s by designing and implementing a high-precision temperature control module with a peak-to-peak temperature fluctuation of no more than 0.002 K. We experimentally demonstrate that a 100 GHz mm-wave signal to be transmitted over a 150 km fiber-optic link can achieve the fractional frequency instabilities of less than 3.4 × 10-14 at 1 s and 3.5 × 10-17 at 10,000 s.
RESUMO
In this work, based on two parallel reservoir computers realized by the two polarization components of the optically pumped spin-VCSEL with double optical feedbacks, we propose the fusion-prediction scheme for the Mackey-Glass (MG) and Lorenz (LZ) chaotic time series. Here, the direct prediction and iterative prediction results are fused in a weighted average way. Compared with the direct-prediction errors, the fusion-prediction errors appear great decrease. Their values are far less than the values of the direct-prediction errors when the iteration step-size are no more than 15. By the optimization of the temporal interval and the sampling period, under the iteration step-size of 3, the fusion-prediction errors for the MG and LZ chaotic time-series can be reduced to 0.00178 and 0.004627, which become 8.1% of the corresponding direct-prediction error and 28.68% of one, respectively. Even though the iteration step-size reaches to 15, the fusion-prediction errors for the MG and LZ chaotic time-series can be reduced to 55.61% of the corresponding direct-prediction error and 77.28% of one, respectively. In addition, the fusion-prediction errors have strong robustness on the perturbations of the system parameters. Our studied results can potentially apply in the improvement of prediction accuracy for some complex nonlinear time series.
RESUMO
In this work, we propose a chaotic secure communication system with optical time division multiplexing (OTDM), using two cascaded reservoir computing systems based on multi beams of chaotic polarization components emitted by four optically pumped VCSELs. Here, each level of reservoir layer includes four parallel reservoirs, and each parallel reservoir contains two sub-reservoirs. When the reservoirs in the first-level reservoir layer are well trained and the training errors are far less than 0.1, each group of chaotic masking signals can be effectively separated. When the reservoirs in the second reservoir layer are effectively trained and the training errors are far less than 0.1, the output for each reservoir can be well synchronized with the corresponding original delay chaotic carrier-wave. Here, the synchronization quality between them can be characterized by the correlation coefficients of more than 0.97 in different parameter spaces of the system. Under these high-quality synchronization conditions, we further discuss the performances of dual-channel OTDM with a rate of 4×60 Gb/s. By observing the eye diagram, bit error rate and time-waveform of each decoded message in detail, we find that there is a large eye-openings in the eye diagrams, low bit error rate and higher quality time-waveform for each decoded message. Except that the bit error rate of one decoded message is lower than 7 × 10-3 in different parameter spaces, and those of the other decoded messages are close to 0, indicating that high-quality data transmissions are expected to be realized in the system. The research results show that the multi-cascaded reservoir computing systems based on multiple optically pumped VCSELs provide an effective method for the realization of multi-channel OTDM chaotic secure communications with high-speed.
RESUMO
Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta-analysis of 2426-single and 161-paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( I NH 4 ) and nitrate ( I NO 3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to I NH 4 (GN/ I NH 4 ) and of soil nitrate to ammonium (NO3 - /NH4 + ) less than one, but was leaky in subtropical forests with GN/ I NH 4 and NO3 - /NH4 + higher than one. Soil NH4 + dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3 - dynamics. Soil texture played a role, as GNM and I NH 4 were positively correlated with silt and clay contents, while I NO 3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ I NH 4 , NO3 - /NH4 + , and nitrous oxide emissions and the decrease in I NO 3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.
Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Nitratos/análise , Solo/química , Argila , Florestas , Ciclo do Nitrogênio , Compostos de Amônio/análiseRESUMO
In the present study, we investigated the effects of auditory numerosity and magnitude (loudness) on visual numerosity processing. Participants compared numerosities of two sequential dot arrays. The second dot array was paired with a tone array that was independent of visual comparison. The numerosity (One-tone vs. Multiple-tone) and the non-numerical magnitude of tones (loudness) were manipulated in Experiments 1 and 2, respectively. In Experiment 1, participants' inverse efficiency score (IES), that is, the quotient between response time and accuracy, was significantly smaller in the One-tone and Multiple-tone conditions than that in the No-tone condition, and linear trend analyses showed that the IES decreased with the number of tones. In Experiment 2, the IES in the Loud-tone condition was significantly smaller than that in the No-tone condition, and the IES decreased as the loudness of the tones increased. In Experiment 3, both auditory numerosity and magnitude were manipulated. For soft tones, the IES was smaller in the Multiple-tone condition than in the One-tone condition, whereas no significant difference was found between two conditions in loud tones. In sum, these findings suggest that the visual numerical representation can be spontaneously affected by the numerosity and non-numerical magnitude of stimuli from another modality.