Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028901

RESUMO

BACKGROUND AND AIMS: The liver possesses a remarkable regenerative capacity in response to injuries or viral infections. Various growth factors and cytokines are involved in regulating liver regeneration. Prostaglandin (PG) D2, a pro-resolution lipid mediator, is the most abundant hepatic prostanoid. However, the role of PGD2 in the injury-induced liver regeneration remains unclear. APPROACH AND RESULTS: Two-thirds partial hepatectomy (70% PH), massive hepatectomy (85% resection), and carbon tetrachloride-induced chronic injury were performed in mice to study the mechanisms of live regeneration. Hepatic PGD2 production was elevated in mice after PH. Global deletion of D prostanoid receptor (DP) 1, but not DP2, slowed PH-induced liver regeneration in mice, as evidenced by lower liver weight to body weight ratio, less Ki67+ hepatocyte proliferation, and G2/M phase hepatocytes. Additionally, DP1 deficiency specifically in resident Kupffer cells (KCs), and not in endothelial cells or hepatic stellate cells, retarded liver regeneration in mice post-PH. Conversely, the overexpression of exogenous DP1 in KCs accelerated liver regeneration in mice. Mechanistically, DP1 activation promoted Wnt2 transcription in a PKA/CREB-dependent manner in resident KCs and mediated hepatocyte proliferation through Frizzled8/ß-catenin signaling. Adeno-associated virus vector serotype 8 (AAV8)-mediated Frizzled8 knockdown in hepatocytes attenuated accelerated liver regeneration in KC-DP1 transgenic mice post-PH. Treatment with the DP1 receptor agonist BW245C promotes PH-induced liver regeneration in mice. CONCLUSIONS: DP1 activation mediates crosstalk between KCs and hepatocytes through Wnt2, and facilitates liver regeneration. Hence, DP1 may serve as a novel therapeutic target in acute and chronic liver diseases.

2.
Opt Lett ; 49(6): 1413-1416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489413

RESUMO

Tunable optical filters at the chip scale play a crucial role in fulfilling the need for reconfigurability in channel routing, optical switching, and wavelength division multiplexing systems. In this Letter, we propose a tunable double notch filter on thin-film lithium niobate using dual microring architecture. This unique integrated filter is essential for complex photonic integrated circuits, along with multiple channels and various frequency spacing. With only one loaded voltage, the device demonstrates a wide frequency spacing tunability from 16.1 to 89.9 GHz by reversely tuning the resonances of the two microrings while the center wavelength between the two resonances remains unaltered. Moreover, by utilizing the pronounced electro-optic properties of lithium niobate associated with the tight light confined nanophotonic waveguides, the device demonstrates a spacing tunability of 0.82 GHz/V and a contrast of 10-16 dB. In addition, the device has an ultracompact footprint of 0.0248 mm2.

3.
Nanotechnology ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025078

RESUMO

Flexible electronic device requires a novel micro supercapacitors (MSCs) energy conversion-storage system based on two-dimensional (2D) materials to solve the problems of stiffness and complexity. Herein, we report a novel catalytic introduction method of graphene with adjustable porosity by high-energy photon beam. The graphene/Ti3C2Tx heterostructure was constructed by electrostatic self-assembly, has a high cycle life (98% after 8,000 cycles), energy density (11.02 mWh cm-3), and demonstrate excellent flexible alternating current line-filtering performance. The phase angle of -79.8° at 120 Hz and a resistance-capacitance constant of 0.068 ms. Furthermore, the porous graphene/Ti3C2Tx structures produced by multiple catalytic inductions allowed ions to deeply penetrate the electrode, thereby increasing the stacking density. The special "pore-layer nesting" graphene structure with adjustable pores effectively increased the specific surface area, and its superior matching with electrolyte solutions greatly improved surface-active site utilization. This work offers an alternative strategy for fabricating a 2D heterostructure for an MSC.

4.
Phys Chem Chem Phys ; 26(26): 18302-18310, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910568

RESUMO

This study introduces a new wide-bandgap graphene-like structure, denoted as C6BN, achieved by incorporating an eight-electron BN pair, substantially modifying its electronic properties. Utilizing extensive density functional calculations, we comprehensively analyzed the stability, electronic structure, mechanical properties, and optical-electrical characteristics of C6BN. Our investigations reveal the material's exceptional thermodynamic, mechanical, and dynamic stability. Notably, the calculated wide bandgap of 2.81 eV in C6BN, supported by analyses of energy levels, band structures, and density of states, positions it as a promising two-dimensional wide-bandgap semiconductor. Additionally, C6BN exhibits isotropic mechanical features, highlighting its inherent flexibility. Remarkably, our calculations indicate an ultra-low dielectric constant (k = 1.67) for C6BN, surpassing that of well-established third-generation semiconductors. Further exploration into the thermoelectric properties of C6BN demonstrates its promising performance, as evidenced by calculations of thermal conductivity (κ), power factor (P), and Seebeck coefficient (S). In summary, our findings underscore the significant potential of the proposed C6BN structure as a flexible two-dimensional material poised to drive future advancements in electronic and energy-related technologies.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38819176

RESUMO

Objective: To explore the efficacy of dapagliflozin plus pentoxifylline in the treatment of early diabetic nephropathy and its effect on serum inflammatory factors and immune function. Methods: A total of 90 patients with early diabetic nephropathy who were admitted to Cangzhou Central Hospital from January 2019 to January 2022 were recruited and randomized (1:1) into a control group and an observation group using the random number table method. The control group was treated with dapagliflozin, and the observation group was treated with pentoxifylline plus dapagliflozin. The effectiveness of urinary α (1) microglobulin (α 1-mg) was determined by immunoturbidimetric method, and urinary ß (2) microglobulin (ß 2-mg) was determined. Urine creatinine was determined enzymatically, and the urinary microprotein albumin creatinine ratio (mAlb/Cr) was calculated. The levels of inflammatory factors [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)] were detected. Before and after treatment, 3 mL of venous blood was drawn from the two groups of patients, and serum CD4+, CD8+, and CD4+/CD8+ levels were detected. The incidence of adverse reactions between the two groups was calculated. Results: Dapagliflozin plus pentoxifylline was associated with a higher effective rate than dapagliflozin alone (96.67% vs 81.67%) (RR 0·80 [95% CI 0·61-0.98]; P = .021). Dapagliflozin plus pentoxifylline led to lower renal function parameters versus dapagliflozin alone, in favor of the observation group (RR 0.67 [95% CI 0.66-0.88]; P = .032). After treatment, the serum levels of IL-6 and TNF-α in patients treated with dapagliflozin plus pentoxifylline were lower than counterparts treated with dapagliflozin (RR 0.62 [95% CI 0.51-0.78]; P = .037). After treatment, CD4+ and CD4+/CD8+ in the two groups were increased compared with baseline parameters, and the level of CD8+ was decreased ; the increase and decrease were greater in the observation group than in the control group (RR 0.70 [95% CI 0.71-0.96]; P = .044) (RR 0.53 [95% CI 0.41-0.78]; P = .033). The two groups demonstrated similar safety profiles with no statistical difference observed in the incidence of adverse reactions between the two groups (RR 0.73 [95% CI 0.73-1.08]; P = .051). Conclusion: Dapagliflozin plus pentoxifylline might be a promising alternative in the treatment of patients with early diabetic nephropathy, it significantly mitigates the body's inflammatory response, enhances immune function, attenuates the main clinical symptoms, with a high safety profile.

6.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931658

RESUMO

This article describes a novel fusion of a generative formal model for three-dimensional (3D) shapes with deep learning (DL) methods to understand the geometric structure of 3D objects and the relationships between their components, given a collection of unorganized point cloud measurements. Formal 3D shape models are implemented as shape grammar programs written in Procedural Shape Modeling Language (PSML). Users write PSML programs to describe complex objects, and DL networks estimate the configured free parameters of the program to generate 3D shapes. Users write PSML programs to enforce fundamental rules that define an object class and encode object attributes, including shapes, components, size, position, etc., into a parametric representation of objects. This fusion of the generative model with DL offers artificial intelligence (AI) models an opportunity to better understand the geometric organization of objects in terms of their components and their relationships to other objects. This approach allows human-in-the-loop control over DL estimates by specifying lists of candidate objects, the shape variations that each object can exhibit, and the level of detail or, equivalently, dimension of the latent representation of the shape. The results demonstrate the advantages of the proposed method over competing approaches.

7.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610416

RESUMO

This article presents an analysis of current state-of-the-art sensors and how these sensors work with several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications, focusing on low-altitude and high-speed scenarios. A new experimental construct is created using highly realistic environments made possible by integrating the AirSim simulator with Google 3D maps models using the Cesium Tiles plugin. Experiments are conducted in this high-realism simulated environment to evaluate the performance of three distinct mapping algorithms: (1) Direct Sparse Odometry (DSO), (2) Stereo DSO (SDSO), and (3) DSO Lite (DSOL). Experimental results evaluate algorithms based on their measured geometric accuracy and computational speed. The results provide valuable insights into the strengths and limitations of each algorithm. Findings quantify compromises in UAV algorithm selection, allowing researchers to find the mapping solution best suited to their application, which often requires a compromise between computational performance and the density and accuracy of geometric map estimates. Results indicate that for UAVs with restrictive computing resources, DSOL is the best option. For systems with payload capacity and modest compute resources, SDSO is the best option. If only one camera is available, DSO is the option to choose for applications that require dense mapping results.

8.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398631

RESUMO

Aqueous zinc ion batteries (AZIBs) have emerged as a promising battery technology due to their excellent safety, high capacity, low cost, and eco-friendliness. However, the cycle life of AZIBs is limited by severe side reactions and zinc dendrite growth on the zinc electrode surface, hindering large-scale application. Here, an electrolyte optimization strategy utilizing the simplest dipeptide glycylglycine (Gly-Gly) additive is first proposed. Theoretical calculations and spectral analysis revealed that, due to the strong interaction between the amino group and Zn atoms, Gly-Gly preferentially adsorbs on zinc's surface, constructing a stable and adaptive interfacial layer that inhibits zinc side reactions and dendrite growth. Furthermore, Gly-Gly can regulate zinc ion solvation, leading to a deposition mode shift from dendritic to lamellar and limiting two-dimensional dendrite diffusion. The symmetric cell with the addition of a 20 g/L Gly-Gly additive exhibits a cycle life of up to 1100 h. Under a high current density of 10 mA cm-2, a cycle life of 750 cycles further demonstrates the reliable adaptability of the interfacial layer. This work highlights the potential of Gly-Gly as a promising solution for improving the performance of AZIBs.

9.
J Am Chem Soc ; 145(21): 11829-11836, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199388

RESUMO

In the electrochemical CO2 reduction reaction (CO2RR), CO2 activation is always the first step, followed by the subsequent hydrogenation. The catalytic performance of CO2RR is intrinsically restricted by the competition between molecular CO2 activation and CO2 reduction product release. Here, we design a heteronuclear Fe1-Mo1 dual-metal catalytic pair on ordered porous carbon that features a high catalytic performance for driving electrochemical CO2 reduction to CO. Combining real-time near-ambient pressure X-ray photoelectron spectroscopy, operando 57Fe Mössbauer spectroscopy, and in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements with density functional theory calculations, chemical adsorption of CO2 is observed on the Fe1-Mo1 catalytic pair through a bridge configuration, which prompts the bending of the CO2 molecule for CO2 activation and then facilitates the subsequent hydrogeneration reaction. More importantly, the dynamic adsorption configuration transition from the bridge configuration of CO2 on Fe1-Mo1 to the linear configuration of CO on the Fe1 center results in breaking the scaling relationship in CO2RR, simultaneously promoting the CO2 activation and the CO release.

10.
Small ; 19(6): e2205962, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461681

RESUMO

Wide-bandgap inorganic cesium lead halide CsPbIBr2 is a popular optoelectronic material that researchers are interested in because of the character that balances the power conversion efficiency and stability of solar cells. It also has great potential in semitransparent solar cells, indoor photovoltaics, and as a subcell for tandem solar cells. Although CsPbIBr2 -based devices have achieved good performance, the open-circuit voltage (Voc ) of CsPbIBr2 -based perovskite solar cells (PSCs) is still lower, and it is critical to further reduce large energy losses (Eloss ). Herein, a strategy is proposed for achieving surface p-type doping for CsPbIBr2 -based perovskite for the first time, using 1,5-Diaminopentane dihydroiodide at the perovskite surface to improve hole extraction efficiency. Meanwhile, the adjusted energy levels reduce Eloss and improve Voc of the CsPbIBr2 PSCs. Furthermore, the Cs- and Br-vacancies at the interface are filled, reducing structural disorder and defect states and thus improving the quality of the perovskite film. As a result, the target device achieves a high efficiency of 11.02% with a Voc of 1.33 V, which is among the best values. In addition to the improved performance, the stability of the target device under various conditions is enhanced, and the lead leakage is effectively suppressed.

11.
Small ; 19(34): e2300468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37035993

RESUMO

The advent of big data era has put forward higher requirements for electronic nanodevices that have low energy consumption for their application in analog computing with memory and logic circuit to address attendant energy efficiency issues. Here, a miniaturized diode with a reversible switching state based on N-n MoS2 homojunction used a bandgap renormalization effect through the band alignment type regulated by both dielectric and polarization, controllably switched between type-I and type-II, which can be simulated as artificial synapse for sensing memory processing because of its rectification, nonvolatile characteristic and high optical responsiveness. The device demonstrates a rectification ratio of 103 . When served as memory retention time, it can attain at least 7000 s. For the synapse simulation, it has an ultralow-level energy consumption because of the pA-level operation current with 5 pJ for long-term potentiation and 7.8 fJ for long-term depression. Furthermore, the paired pulse facilitation index reaches up to 230%, and it realizes the function of optical storage that can be applied to simulate visual cells.

12.
Opt Express ; 31(13): 20850-20860, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381199

RESUMO

Hetero-epitaxial growth of GaN often leads to high density of threading dislocations, which poses a significant challenge to the promotion of the performance of GaN-based devices. In this study, we address this issue by utilizing an Al-ion implantation pretreatment on sapphire substrates, which induces high-quality regularly arranged nucleation and promotes the crystal quality of GaN. Specifically, we demonstrate that an Al-ion dose of 1013 cm-2 leads to a reduction of full width at half maximum values of (002)/(102) plane X-ray rocking curves from 204.7/340.9 arcsec to 187.0/259.5 arcsec. Furthermore, a systematic investigation of GaN film grown on the sapphire substrate with various Al-ion doses is also performed, and the nucleation layer growth evolution on different sapphire substrates is analyzed. As confirmed by the atomic force microscope results of the nucleation layer, the ion implantation induced high-quality nucleation is demonstrated, which results in the improved crystal quality of the as-grown GaN films. Transmission electron microscope measurement also proves the dislocation suppression through this method. In addition, the GaN-based light-emitting diodes (LEDs) were also fabricated based on the as-grown GaN template and the electrical properties are analyzed. The wall-plug efficiency at 20 mA has risen from 30.7% to 37.4% of LEDs with Al-ion implantation sapphire substrate at a dose of 1013 cm-2. This innovative technique is effective in the promotion of GaN quality, which can be a promising high-quality template for LEDs and electronic devices.

13.
Nanotechnology ; 35(4)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524059

RESUMO

With advancements in information technology, an enormous amount of data is being generated that must be quickly accessible. However, conventional Si memory cells are approaching their physical limits and will be unable to meet the requirements of intense applications in the future. Notably, 2D atomically thin materials have demonstrated multiple novel physical and chemical properties that can be used to investigate next-generation electronic devices and breakthrough physical limits to continue Moore's law. Band structure is an important semiconductor parameter that determines their electrical and optical properties. In particular, 2D materials have highly tunable bandgaps and Fermi levels that can be achieved through band structure engineering methods such as heterostructure, substrate engineering, chemical doping, intercalation, and electrostatic doping. In particular, dynamic control of band structure engineering can be used in recent advancements in 2D devices to realize nonvolatile storage performance. This study examines recent advancements in 2D memory devices that utilize band structure engineering. The operational mechanisms and memory characteristics are described for each band structure engineering method. Band structure engineering provides a platform for developing new structures and realizing superior performance with respect to nonvolatile memory.

14.
Nanotechnology ; 34(21)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36796093

RESUMO

The synaptic devices based on various electronic materials have been widely investigated to realize functions of artificial information processing with low power consumption. In this work, a novel CVD graphene field-effect transistor is fabricated with ionic liquid gate to study the synaptic behaviors based on the electrical-double-layer mechanism. It is found that the excitative current is enhanced with the pulse width, voltage amplitude and frequency. With different situations of the applied pulse voltage, the inhibitory and excitatory behaviors are successfully simulated, at the same time the short-term memory is also realized. The corresponding ions migration and charge density variation are analyzed in the different time segments. This work provides the guidance for the design of artificial synaptic electronics with ionic liquid gate for low-power computing application.

15.
Nanotechnology ; 34(29)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37044083

RESUMO

The advantages of van der Waals epitaxial nitrides have become a research hot topic. It is worth noting that graphene plays an important role in the research of epitaxial AlN epitaxial layer. In this work, we demonstrate a method to obtain high-quality and low-dislocation AlN epitaxial layer by combining graphene and sputtered AlN as the nucleation layer on the C-sapphire substrate via metal organic chemical vapor deposition, and successfully fabricated a 277 nm AlGaN-based deep ultraviolet light emitting diode (DUV-LED) based on the obtained AlN epitaxial layer. The presence of graphene promotes the stress release of AlN. Compared with the AlN epitaxial layer directly grown on graphene/sapphire substrate, the exist of sputtered AlN/graphene nucleation layer facilitates most of the threading dislocations in AlN can annihilate each other in the range of about 100 nm. Thus, as grown AlN epitaxial layer shows the decreasing of the screw dislocation from 2.31 × 109to 2.08 × 108cm-2significantly. We manufacture an DUV-LED with 277 nm emission wavelength by using high-quality AlN films, which shows that magnitude of the leakage current is only on the order of nanoamperes and the forward turn on voltage is 3.5 V at room temperature. This study provides a meaningful strategy to achieve high-quality AlN film and high-performance DUV-LED.

16.
Phys Chem Chem Phys ; 25(43): 29437-29443, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37846752

RESUMO

The extremely difficult ambipolar doping activation greatly hinders the outstanding performance of diamond for electronic devices. The main concern has been devoted to surface conduction by two-dimensional (2D) carriers. 2D hole gas (2DHG) in the diamond is induced by surface transfer doping dominated by the adsorbate's status and faces stability issues. Meanwhile, a feasible way to generate the other essential ambipolar carrier-2D electron gas (2DEG) is still lacking. We propose that the well-lattice-matched diamond/cBN(111) interfaces can spontaneously induce 2D ambipolar carriers with a giant density of 4.17 × 1014 cm-2, an order higher than other competitors. 2DEG and 2DHG can be separately achieved near the hetero-interfaces consisting of C-N and C-B bonds, respectively. Interestingly, the robust 2D charges are derived from a novel bulk-induced polarization-discontinuity at the interfaces, which can be attributed to an unexpected non-zero formal polarization of centrosymmetric cBN along the [111] direction. The existence of 2D ambipolar carriers at the diamond/cBN(111) interfaces has resolved the missing n-type conduction in diamond, thus opening up possibilities for complementary logic applications. Additionally, the high density of quantum-confined 2D ambipolar carriers provides an excellent platform for strongly correlated systems, which could lead to novel quantum information processing applications.

17.
BMC Musculoskelet Disord ; 24(1): 711, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674188

RESUMO

BACKGROUND: The purpose of this study was to measure the femoral prosthesis flexion angle (FPFA) in total knee arthroplasty (TKA) using three-dimensional reconstruction, and to assess the differences in early clinical efficacy between patients with different degrees of flexion. METHODS: We conducted a prospective cohort study. From June 2019 to May 2021, 113 patients admitted for TKA due to osteoarthritis of the knee were selected. The patients' postoperative knee joints were reconstructed in three dimensions according to postoperative three-dimensional computed tomography (CT) scans. The FPFA was measured, and the patients were divided into 4 groups: anterior extension group (FPFA < 0°), mildly flexed group (0° ≤ FPFA < 3°), moderately flexed group (3° ≤ FPFA < 6°) and excessively flexed group (6° ≤ FPFA). The differences in the Knee Society Score (KSS), knee Range of Motion (ROM), and visual analogue scale (VAS) scores were measured and compared between the four groups at each postoperative time point. RESULTS: Postoperative KSS, ROM, and VAS were significantly improved in all groups compared to the preoperative period. At 1 year postoperatively, the ROM was significantly greater in the mildly flexed group (123.46 ± 6.51°) than in the anterior extension group (116.93 ± 8.05°) and the excessively flexed group (118.76 ± 8.20°) (P < 0.05). The KSS was significantly higher in the mildly flexed group (162.68 ± 12.79) than in the other groups at 6 months postoperatively (P < 0.05). The higher KSS (174.17 ± 11.84) in the mildly flexed group was maintained until 1 year postoperatively, with a statistically significant difference (P < 0.05). No significant difference in VAS scores was observed between groups at each time point. CONCLUSIONS: A femoral prosthesis flexion angle of 0-3° significantly improved postoperative knee mobility, and patients could obtain better Knee Society Scores after surgery, which facilitated the postoperative recovery of knee function. TRIAL REGISTRATION: ChiCTR2100051502, 2021/09/24.


Assuntos
Artroplastia do Joelho , Membros Artificiais , Humanos , Artroplastia do Joelho/efeitos adversos , Estudos Prospectivos , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia
18.
Angew Chem Int Ed Engl ; 62(33): e202306229, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37338503

RESUMO

Perovskite solar cells (PSCs) are considered as a promising photovoltaic technology due to their high efficiency and low cost. However, their long-term stability, mechanical durability, and environmental risks are still unable to meet practical needs. To overcome these issues, we designed a multifunctional elastomer with abundant hydrogen bonds and carbonyl groups. The chemical bonding between polymer and perovskite could increase the growth activation energy of perovskite film and promote the preferential growth of high-quality perovskite film. Owing to the low defect density and gradient energy-level alignment, the corresponding device exhibited a champion efficiency of 23.10 %. Furthermore, due to the formation of the hydrogen-bonded polymer network in the perovskite film, the target devices demonstrated excellent air stability and enhanced flexibility for the flexible PSCs. More importantly, the polymer network could coordinate with Pb2+ ions, immobilizing lead atoms to reduce their release into the environment. This strategy paves the way for the industrialization of high-performance flexible PSCs.

19.
Angew Chem Int Ed Engl ; 62(10): e202211174, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562773

RESUMO

Electrochemically reducing CO2 to valuable fuels or feedstocks is recognized as a promising strategy to simultaneously tackle the crises of fossil fuel shortage and carbon emission. Sn-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2 RR) to make formic acid/formate, which unfortunately still suffer from low activity, selectivity and stability. In this work, halogen (F, Cl, Br or I) was introduced into the Sn catalyst by a facile hydrolysis method. The presence of halogen was confirmed by a collection of ex situ and in situ characterizations, which rendered a more positive valence state of Sn in halogen-incorporated Sn catalyst as compared to unmodified Sn under cathodic potentials in CO2 RR and therefore tuned the adsorption strength of the key intermediate (*OCHO) toward formate formation. As a result, the halogen-incorporated Sn catalyst exhibited greatly enhanced catalytic performance in electrochemical CO2 RR to produce formate.

20.
BMC Musculoskelet Disord ; 23(1): 906, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217137

RESUMO

PURPOSE: The purpose of this study was to investigate whether tibial tuberosity-posterior cruciate ligament (TT-PCL) distance is representative of the true lateralization of tibial tuberosity in isolation and its influence on the accuracy of the Akagi line and medial third of the tibial tuberosity (MTTT). METHODS: A total of 135 osteoarthritis patients with varus knees who undergoing computed tomography scans were enrolled to establish three-dimension models of the knees. Tibial width (TW), tibial tuberosity lateralization (TTL), posterior cruciate ligament lateralization (PCLL), knee rotation angle (KRA) and tibial rotational axes were measured and investigated their correlations with TT-PCL distance. Based on the analysis of receiver operating characteristic (ROC) curve, the influence of TT-PCL distance on the distributions of mismatch angles of tibial rotational axes was investigated with a safe zone (-5° to 10°). RESULTS: TT-PCL distance was in significantly positive correlation with TW (r = 0.493; P < 0.001) and TTL (r = 0.378; P < 0.001) which was different with PCLL (r = 0.147; P = 0.009) and KRA (r = -0.166; P = 0.054). All tibial rotational axes were significantly positively correlated with TT-PCL distance (P < 0.001). The mismatch angles between the vertical line of the surgical epicondylar axis (SEA) and the Akagi line and MTTT were -1.7° ± 5.3° and 7.6° ± 5.6° respectively. In terms of the optimal cut-off value of 19 mm for TT-PCL distance, the Akagi line applied as tibial rotational axis ensures 87.3% of the positions of tibial components within the safe zone when TT-PCL distance > 19 mm, and MTTT ensures 83.3% when TT-PCL distance ≤ 19 mm. CONCLUSION: TT-PCL distances cannot reflect the true lateralization of tibial tuberosity in isolation but can aid in the combination of the Akagi line and MTTT in varus knees. The patients with TT-PCL distance > 19 mm are recommended to reference the Akagi line for tibial rotational alignment. MTTT is recommended to the patients with TT-PCL distance ≤ 19 mm. The study will aid surgeons in deciding which reference may be used by measuring TT-PCL distance using a preoperative CT.


Assuntos
Artroplastia do Joelho , Ligamento Cruzado Posterior , Artroplastia do Joelho/métodos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamento Cruzado Posterior/diagnóstico por imagem , Ligamento Cruzado Posterior/cirurgia , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA