Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Heart Fail Rev ; 29(4): 751-768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38498262

RESUMO

Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.


Assuntos
Cálcio , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Fosforilação , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Retículo Endoplasmático/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo
2.
Life Sci ; 350: 122769, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848943

RESUMO

The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.


Assuntos
Envelhecimento , Oftalmopatias , Proteína Forkhead Box O3 , Humanos , Proteína Forkhead Box O3/metabolismo , Oftalmopatias/metabolismo , Oftalmopatias/tratamento farmacológico , Animais , Envelhecimento/metabolismo , Longevidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA