Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7700): 255-258, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618817

RESUMO

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Assuntos
Alphacoronavirus/isolamento & purificação , Alphacoronavirus/patogenicidade , Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Quirópteros/virologia , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Suínos/virologia , Alphacoronavirus/classificação , Alphacoronavirus/genética , Doenças dos Animais/transmissão , Animais , Biodiversidade , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Diarreia/patologia , Diarreia/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Genoma Viral/genética , Humanos , Jejuno/patologia , Jejuno/virologia , Filogenia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Análise Espaço-Temporal , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479172

RESUMO

The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2 Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.


Assuntos
Ageusia/genética , Quirópteros/fisiologia , Dieta , Genoma , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , Ageusia/metabolismo , Animais , Quirópteros/classificação , Evolução Molecular , Cadeia Alimentar , Frutas , Expressão Gênica , Insetos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Seleção Genética , Paladar/genética
3.
J Virol ; 95(22): e0117321, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34431700

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reignited global interest in animal coronaviruses and their potential for human transmission. While bats are thought to be the wildlife reservoir of SARS-CoV and SARS-CoV-2, the widespread human coronavirus OC43 is thought to have originated in rodents. Here, we sampled 297 rodents and shrews, representing eight species, from three municipalities of southern China. We report coronavirus prevalences of 23.3% and 0.7% in Guangzhou and Guilin, respectively, with samples from urban areas having significantly higher coronavirus prevalences than those from rural areas. We obtained three coronavirus genome sequences from Rattus norvegicus, including a Betacoronavirus (rat coronavirus [RCoV] GCCDC3), an Alphacoronavirus (RCoV-GCCDC5), and a novel Betacoronavirus (RCoV-GCCDC4). Recombination analysis suggests that there was a potential recombination event involving RCoV-GCCDC4, murine hepatitis virus (MHV), and Longquan Rl rat coronavirus (LRLV). Furthermore, we uncovered a polybasic cleavage site, RARR, in the spike (S) protein of RCoV-GCCDC4, which is dominant in RCoV. These findings provide further information on the potential for interspecies transmission of coronaviruses and demonstrate the value of a One Health approach to virus discovery. IMPORTANCE Surveillance of viruses among rodents in rural and urban areas of South China identified three rodent coronaviruses, RCoV-GCCDC3, RCoV-GCCDC4, and RCoV-GCCDC5, one of which was identified as a novel potentially recombinant coronavirus with a polybasic cleavage site in the spike (S) protein. Through reverse transcription-PCR (RT-PCR) screening of coronaviruses, we found that coronavirus prevalence in urban areas is much higher than that in rural areas. Subsequently, we obtained three coronavirus genome sequences by deep sequencing. After different method-based analyses, we found that RCoV-GCCDC4 was a novel potentially recombinant coronavirus with a polybasic cleavage site in the S protein, dominant in RCoV. This newly identified coronavirus RCoV-GCCDC4 with its potentially recombinant genome and polybasic cleavage site provides a new insight into the evolution of coronaviruses. Furthermore, our results provide further information on the potential for interspecies transmission of coronaviruses and demonstrate the necessity of a One Health approach for zoonotic disease surveillance.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/genética , Recombinação Genética , Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Evolução Molecular , Genoma Viral/genética , Humanos , Filogenia , Prevalência , Musaranhos/virologia
4.
J Biomech Eng ; 144(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34729585

RESUMO

The flight of bats is comparatively less documented and understood than birds and insects and may provide novel inspiration for the design of flapping flight robots. This study captured the natural flight of short-nosed fruit bats (Cynopterus sphinx) by an optical motion capture system, "OptiTrack", with pasted markers on the wings and body to reconstruct the flight parameters. Due to the self-occlusion at some moments, points on the membrane wings cannot be captured by any cameras. To draw a smooth trajectory, it is desired to reconstruct all missing data. Therefore, an algorithm is proposed by using numerical techniques, accompanied by modern mathematical and computational tools, to envisage the missing data from the captured flight. The least-square fitted polynomial engendered the parameter equations for x-, y-, and z-coordinates of marked points which were used to reconstruct the trajectory of the flight. The parameter equations of position coordinates were also used to compute the morphological and aerodynamic characteristics of the flight. The most outstanding contribution of the work is that not only the trajectory, velocity, and velocity field but also the morphing areas of the membrane wings were recreated using the reconstructed data. These data and reconstructed curves of trajectory and velocity field will be used for the further aerodynamic analysis and mechanism design of the flapping robot. This method can also be generalized to reconstruct the performance parameters of any other animals for bionic design.


Assuntos
Quirópteros , Robótica , Animais , Fenômenos Biomecânicos , Voo Animal , Modelos Biológicos , Asas de Animais/anatomia & histologia
5.
Mol Phylogenet Evol ; 155: 107018, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242584

RESUMO

Species of the family Planctomycetes have a complex intracellular structure, which is distinct from that of the majority of non-Planctomycetes bacteria. At present, genomic evidence of the evolution of intracellular complexity is lacking, cognitions of Planctomycetes's intracellular structure mainly rely on electron microscope observation. As the presence of WD40 motifs in eukaryotic proteins probably links to intracellular complexity, bioinformatic studies were conducted to detect and enumerate WD40 motifs, WD40 domains, and WD40 motif-bearing proteins in the genomes of 11 Planctomycetes species, 2775 non-Planctomycetes bacteria, and 63 representative eukaryotes. Compared to non-Planctomycetes bacteria (average 5 WD40 motifs and 1 WD40 motif-bearing protein per genome), a large increase in the number of WD40 motifs in Planctomycetes species (average 116 WD40 motifs and 26 WD40 motif-bearing proteins per genome) was observed. However, the average number of WD40 motifs in Planctomycetes species was significantly lower than that of eukaryotes (average 584 WD40 motifs and 193 WD40 motif-bearing proteins per genome). The number of WD40 motif-bearing proteins was found to correlate with genome size and gene number. Most WD40 motif-bearing proteins of Planctomycetes species belonged to the categories of 'ribosome assembly protein 4' and 'eukaryotic-like serine/threonine protein kinase.' Collinearity analysis of amino acid compositions of Planctomycetes and eukaryotic WD40 motifs revealed that the sequences of the four anti-parallel ß-sheets of WD40 motifs were conserved. However, a number of Planctomycetes WD40 motifs had increased size of the interval region of ß-sheets D and A. Taken together, results of this study suggest a positive correlation between the number of WD40 motif-bearing proteins and the evolution of Planctomycetes species toward a complex intracellular structure similar to that of eukaryotes.


Assuntos
Bactérias/genética , Evolução Molecular , Repetições WD40 , Archaea/genética , Eucariotos/genética , Tamanho do Genoma , Magnetossomos/metabolismo , Filogenia , Proteínas/química , Proteínas/genética
6.
J Biomech Eng ; 143(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210129

RESUMO

Bat is the only mammal in the nature that can fly. Compared with birds and insects, bats are quite special in that their wings are formed by an elastic membrane, which renders that the airfoil deforms greatly during downstroke and upstroke. Due to the compliant skin of a bat, the movements of its wings are three-dimensionally complex during diverse flight behaviors. To understand the maneuverability and flight performance, three-dimensional reconstruction of the flight kinematics is essential. This study focuses on the reconstruction of the wing kinematics of the bat and identifies the primary relationship of parameters of aerodynamics in straight flight. With markers pasted on the wings and body of a bat, the motions of these points are recorded by a computerized optical motion capture system. The kinematic analysis shows that the motion of wings is very intricate. The digits of the wing display the sign of coupled motion. A novel approach was developed to measure the angle of attack and flapping angle of the wing. The angle of attack of leading edge differs with the overall angle of attack of the wing. The kinematics of the bat's wing is helpful to interpret the secret of the bat's flight.


Assuntos
Quirópteros , Animais
7.
Mol Biol Evol ; 36(10): 2171-2183, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31311032

RESUMO

Diet is a key factor in determining and structuring animal diversity and adaptive radiations. The mammalian fossil record preserves phenotypic evidence of many dietary shifts, whereas genetic changes followed by dietary diversification in mammals remain largely unknown. To test whether living mammals preserve molecular evidence of dietary shifts, we examined the trehalase gene (Treh), which encodes an enzyme capable of digesting trehalose from insect blood, in bats and other mammals with diverse diets. Bats represent the largest dietary radiation among all mammalian orders, with independent origins of frugivory, nectarivory, carnivory, omnivory, and even sanguivory in an otherwise insectivorous clade. We found that Treh has been inactivated in unrelated bat lineages that independently radiated into noninsectivorous niches. Consistently, purifying selection has been markedly relaxed in noninsectivorous bats compared with their insectivorous relatives. Enzymatic assays of intestinal trehalase in bats suggest that trehalase activity tends to be lost or markedly reduced in noninsectivorous bats compared with their insectivorous relatives. Furthermore, our survey of Treh in 119 mammal species, which represent a deeper evolutionary timeframe, additionally identified a number of other independent losses of Treh in noninsectivorous species, recapitulating the evolutionary pattern that we found in bats. These results document a molecular record of dietary diversification in mammals, and suggest that such molecular signatures of dietary shifts would help us understand both historical and modern changes of animal diets.


Assuntos
Evolução Biológica , Quirópteros/genética , Dieta , Trealase/genética , Animais , Quirópteros/metabolismo , Trealase/metabolismo
8.
Proc Biol Sci ; 287(1934): 20200875, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900318

RESUMO

Recently diverged taxa with contrasting phenotypes offer opportunities for unravelling the genetic basis of phenotypic variation in nature. Horseshoe bats are a speciose group that exhibit a derived form of high-duty cycle echolocation in which the inner ear is finely tuned to echoes of the narrowband call frequency. Here, by focusing on three recently diverged subspecies of the intermediate horseshoe bat (Rhinolophus affinis) that display divergent echolocation call frequencies, we aim to identify candidate loci putatively involved in hearing frequency variation. We used de novo transcriptome sequencing of two mainland taxa (himalayanus and macrurus) and one island taxon (hainanus) to compare expression profiles of thousands of genes. By comparing taxa with divergent call frequencies (around 15 kHz difference), we identified 252 differentially expressed genes, of which six have been shown to be involved in hearing or deafness in human/mouse. To obtain further validation of these results, we applied quantitative reverse transcription-PCR to the candidate gene FBXL15 and found a broad association between the level of expression and call frequency across taxa. The genes identified here represent strong candidate loci associated with hearing frequency variation in bats.


Assuntos
Quirópteros/genética , Ecolocação/fisiologia , Transcriptoma , Animais , Fluxo Gênico , Audição , Filogenia
9.
J Infect Dis ; 218(2): 197-207, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29346682

RESUMO

Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4.


Assuntos
Betacoronavirus/fisiologia , Quirópteros , Dipeptidil Peptidase 4/metabolismo , Evolução Molecular , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus/genética
10.
Mol Ecol ; 27(22): 4475-4488, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230081

RESUMO

By generating raw genetic material and diverse biological functions, gene duplication represents a major evolutionary mechanism that is of fundamental importance in ecological adaptation. The lineage-specific duplication events of bitter taste receptor genes (Tas2rs) have been identified in a number of vertebrates, but functional evolution of new Tas2r copies after duplication remains largely unknown. Here, we present the largest data set of bat Tas2rs to date, identified from existing genome sequences of 15 bat species and newly sequenced from 17 bat species, and demonstrate lineage-specific duplications of Tas2r16, Tas2r18 and Tas2r41 that only occurred in Myotis bats. Myotis bats are highly speciose and represent the only mammalian genus that is naturally distributed on every continent except Antarctica. The occupation of such diverse habitats might have driven the Tas2r gene expansion. New copies of Tas2rs in Myotis bats have shown molecular adaptation and functional divergence. For example, three copies of Tas2r16 in Myotis davidii showed differential sensitivities to arbutin and salicin that may occur in their insect prey, as suggested by cell-based functional assays. We hypothesize that functional differences among Tas2r copies in Myotis bats would increase their survival rate through preventing the ingestion of an elevated number of bitter-tasting dietary toxins from their insect prey, which may have facilitated their adaptation to diverse habitats. Our study demonstrates functional changes of new Tas2r copies after lineage-specific duplications in Myotis bats and highlights the potential role of taste perception in exploiting new environments.


Assuntos
Quirópteros/genética , Evolução Molecular , Duplicação Gênica , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Animais , Modelos Genéticos
11.
Curr Microbiol ; 75(10): 1352-1361, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29922970

RESUMO

Bats can be divided into frugivory, nectarivory, insectivory, and sanguivory based on their diets, and are therefore ideal wild animal models to study the relationship between diets and intestinal microflora. Early studies of bat gut bacteria showed that the diversity and structure of intestinal bacterial communities in bats are closely related to dietary changes. Worthy of note, intestinal microbes are composed of bacteria, fungi, protozoa, and archaea. Although the number of gut fungi is much lower than that of gut bacteria, they also play an important role in maintaining the host homeostasis. However, there are still few reports on the relationship between the gut mycobiota and the dietary habits of the host. In addition, bats have also been shown to naturally transmit pathogenic viruses and bacteria through their feces and saliva, but fungal infections from bat are less studied. Here, we used high-throughput sequencing of bacterial 16S and eukaryotic 18S rRNA genes in the V4 and V9 regions to characterize fecal bacterial and fungal microbiota in phytophagous and insectivorous bats in South China. The results show that the gut microbiota in bats were dominated by bacterial phyla Proteobacteria, Firmicutes, Tenericutes and Bacteroidetes, and fungal phyla Ascomycota and Basidiomycota. There was a significant difference in the diversity of bacterial and fungal microbiota between the groups, in addition to specific bacteria and fungi populations on each of them. Of note, the number of fungi in the feces of herbivorous bats is relatively higher. Most of these fungi are foodborne and are also pathogens of humans and other animals. Thus, bats are natural carriers of fungal pathogens. The current study expands the understanding of the bat gut bacterial and fungal mycobiota and provides further insight into the transmission of fungal pathogens.


Assuntos
Ração Animal , Quirópteros , Fezes/microbiologia , Microbiota , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , China , Feminino , Fungos/classificação , Fungos/genética , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
12.
J Gen Virol ; 98(4): 739-748, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28475035

RESUMO

Bats have been reported to carry diverse adenoviruses. However, most bat adenoviruses have been identified on the basis of partial genome sequences, and knowledge on the evolution of bat adenoviruses remains limited. In this study, we isolated and characterized four novel adenoviruses from two distinct bat species, and their full-length genomes were sequenced. Sequence analysis revealed that these isolates represented three distinct species of the genus Mastadenovirus. However, all isolates had an exceptionally low G+C content and relatively short genomes compared with other known mastadenoviruses. We further analysed the relationships among the G+C content, 5'-C-phosphate-G-3' (CpG) representation and genome size in the family Adenoviridae. Our results revealed that the CpG representation in adenoviral genomes depends primarily on the level of methylation, and the genome size displayed significant positive correlations with both G+C content and CpG representation. Since ancestral adenoviruses are believed to have contained short genomes, those probably had a low G+C content, similar to the genomes of these bat strains. Our results suggest that bats are important natural reservoirs for adenoviruses and play important roles in the evolution of adenoviruses.


Assuntos
Adenoviridae/genética , Quirópteros/virologia , Evolução Molecular , Adenoviridae/classificação , Adenoviridae/isolamento & purificação , Animais , Composição de Bases , Sequência de Bases , Tamanho do Genoma , Genoma Viral , Dados de Sequência Molecular , Filogenia
13.
J Gen Virol ; 98(12): 3046-3059, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106348

RESUMO

Compared to the enormous species diversity of bats, relatively few parvoviruses have been reported. We detected diverse and potentially novel parvoviruses from bats in Hong Kong and mainland China. Parvoviruses belonging to Amdoparvovirus, Bocaparvovirus and Dependoparvovirus were detected in alimentary, liver and spleen samples from 16 different chiropteran species of five families by PCR. Phylogenetic analysis of partial helicase sequences showed that they potentially belonged to 25 bocaparvovirus, three dependoparvovirus and one amdoparvovirus species. Nearly complete genome sequencing confirmed the existence of at least four novel bat bocaparvovirus species (Rp-BtBoV1 and Rp-BtBoV2 from Rhinolophus pusillus, Rs-BtBoV2 from Rhinolophus sinicus and Rol-BtBoV1 from Rousettus leschenaultii) and two novel bat dependoparvovirus species (Rp-BtAAV1 from Rhinolophus pusillus and Rs-BtAAV1 from Rhinolophus sinicus). Rs-BtBoV2 was closely related to Ungulate bocaparvovirus 5 with 93, 72.1 and 78.7 % amino acid identities in the NS1, NP1 and VP1/VP2 genes, respectively. The detection of bat bocaparvoviruses, including Rs-BtBoV2, closely related to porcine bocaparvoviruses, suggests recent interspecies transmission of bocaparvoviruses between bats and swine. Moreover, Rp-BtAAV1 and Rs-BtAAV1 were most closely related to human AAV1 with 48.7 and 57.5 % amino acid identities in the rep gene. The phylogenetic relationship between BtAAVs and other mammalian AAVs suggests bats as the ancestral origin of mammalian AAVs. Furthermore, parvoviruses of the same species were detected from multiple bat species or families, supporting the ability of bat parvoviruses to cross species barriers. The results extend our knowledge on the diversity of bat parvoviruses and the role of bats in parvovirus evolution and emergence in humans and animals.

14.
Virol J ; 14(1): 40, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28222808

RESUMO

BACKGROUND: In recent years, novel hepadnaviruses, hepeviruses, hepatoviruses, and hepaciviruses have been discovered in various species of bat around the world, indicating that bats may act as natural reservoirs for these hepatitis viruses. In order to further assess the distribution of hepatitis viruses in bat populations in China, we tested the presence of these hepatitis viruses in our archived bat liver samples that originated from several bat species and various geographical regions in China. METHODS: A total of 78 bat liver samples (involving two families, five genera, and 17 species of bat) were examined using nested or heminested reverse transcription PCR (RT-PCR) with degenerate primers. Full-length genomic sequences of two virus strains were sequenced followed by phylogenetic analyses. RESULTS: Four samples were positive for hepadnavirus, only one was positive for hepevirus, and none of the samples were positive for hepatovirus or hepacivirus. The hepadnaviruses were discovered in the horseshoe bats, Rhinolophus sinicus and Rhinolophus affinis, and the hepevirus was found in the whiskered bat Myotis davidii. The full-length genomic sequences were determined for one of the two hepadnaviruses identified in R. sinicus (designated BtHBVRs3364) and the hepevirus (designated BtHEVMd2350). A sequence identity analysis indicated that BtHBVRs3364 had the highest degree of identity with a previously reported hepadnavirus from the roundleaf bat, Hipposideros pomona, from China, and BtHEVMd2350 had the highest degree of identity with a hepevirus found in the serotine bat, Eptesicus serotinus, from Germany, but it exhibited high levels of divergence at both the nucleotide and the amino acid levels. CONCLUSIONS: This is the first study to report that the Chinese horseshoe bat and the Chinese whiskered bat have been found to carry novel hepadnaviruses and a novel hepevirus, respectively. The discovery of BtHBVRs3364 further supports the significance of host switches evolution while opposing the co-evolutionary theory associated with hepadnaviruses. According to the latest criterion of the International Committee on Taxonomy of Viruses (ICTV), we hypothesize that BtHEVMd2350 represents an independent genotype within the species Orthohepevirus D of the family Hepeviridae.


Assuntos
Quirópteros/virologia , Hepadnaviridae/classificação , Hepadnaviridae/isolamento & purificação , Hepevirus/classificação , Hepevirus/isolamento & purificação , Fígado/virologia , Filogenia , Animais , China , Análise por Conglomerados , Genoma Viral , Hepadnaviridae/genética , Hepevirus/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
15.
J Gen Virol ; 97(7): 1625-1635, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27032099

RESUMO

Bats carry diverse RNA viruses, some of which are responsible for human diseases. Compared to bat-borne RNA viruses, relatively little information is known regarding bat-borne DNA viruses. In this study, we isolated and characterized three novel bat adenoviruses (BtAdV WIV9-11) from Rhinolophus sinicus. Their genomes, which are highly similar to each other but distinct from those of previously sequenced adenoviruses (AdVs), are 37 545, 37 566 and 38 073 bp in size, respectively. An unusually large E3 gene was identified in their genomes. Phylogenetic and taxonomic analyses suggested that these isolates represent a distinct species of the genus Mastadenovirus. Cell susceptibility assays revealed a broad cell tropism for these isolates, indicating that they have a potentially wide host range. Our results expand the understanding of genetic diversity of bat AdVs.


Assuntos
Proteínas E3 de Adenovirus/genética , Quirópteros/virologia , Genoma Viral/genética , Mastadenovirus/classificação , Mastadenovirus/genética , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Cricetinae , DNA Viral/genética , Variação Genética/genética , Especificidade de Hospedeiro , Humanos , Macaca mulatta , Filogenia , Análise de Sequência de DNA , Suínos , Tropismo Viral
16.
J Gen Virol ; 96(12): 3525-3531, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475793

RESUMO

Bats have been identified as natural reservoirs of many viruses, including reoviruses. Recent studies have demonstrated the interspecies transmission of bat reoviruses to humans. In this study, we report the isolation and molecular characterization of six strains of mammalian orthoreovirus (MRV) from Hipposideros and Myotis spp. These isolates were grouped into MRV serotype 1, 2 or 3 based on the sequences of the S1 gene, which encodes the outer coat protein s1. Importantly, we found that three of six bat MRV strains shared high similarity with MRVs isolated from diseased minks, piglets or humans based on the S1 segment, suggesting that interspecies transmission has occurred between bats and humans or animals. Phylogenetic analyses based on the 10 segments showed that the genomic segments of these bat MRVs had different evolution lineages, suggesting that these bat MRVs may have arisen through reassortment of MRVs of different origins.


Assuntos
Quirópteros/virologia , Vison/virologia , Orthoreovirus de Mamíferos/classificação , Orthoreovirus de Mamíferos/isolamento & purificação , Infecções por Reoviridae/veterinária , Suínos/virologia , Animais , China/epidemiologia , Reservatórios de Doenças/virologia , Humanos , Orthoreovirus de Mamíferos/genética , Filogenia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Sorogrupo
17.
BMC Evol Biol ; 14: 154, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25011626

RESUMO

BACKGROUND: Hybrid zones formed by the secondary contact of divergent lineages represent natural laboratories for studying the genetic basis of speciation. Here we tested for patterns of differential introgression among three X-linked and 11 autosomal regions to identify candidate loci related to either reproductive isolation or adaptive introgression across a hybrid zone between two Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis: R. a. himalayanus and R. a. macrurus. RESULTS: Our results support the previous suggestion that macrurus formed when a third subspecies (R. a. hainanus) recolonized the mainland from Hainan Island, and that himalayanus is the ancestral taxon. However, this overall evolutionary history was not reflected in all loci examined, with considerable locus-wise heterogeneity seen in gene tree topologies, levels of polymorphism, genetic differentiation and rates of introgression. Coalescent simulations suggested levels of lineage mixing seen at some nuclear loci might result from incomplete lineage sorting. Isolation with migration models supported evidence of gene flow across the hybrid zone at one intronic marker of the hearing gene Prestin. CONCLUSIONS: We suggest that phylogenetic discordance with respect to the species tree seen here is likely to arise via a combination of incomplete lineage sorting and a low incidence of introgression although we cannot rule out other explanations such as selection and recombination. Two X-linked loci and one autosomal locus were identified as candidate regions related to reproductive isolation across the hybrid zone. Our work highlights the importance of including multiple genomic regions in characterizing patterns of divergence and gene flow across a hybrid zone.


Assuntos
Quirópteros/genética , Animais , Núcleo Celular/genética , Quirópteros/classificação , Quirópteros/fisiologia , Cromossomos de Mamíferos , DNA Mitocondrial/genética , Ecolocação , Fluxo Gênico , Genética Populacional , Filogenia , Polimorfismo Genético , Isolamento Reprodutivo , Cromossomo X
18.
Nat Genet ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834904

RESUMO

Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.

19.
Integr Zool ; 18(3): 493-505, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36049759

RESUMO

Understanding how natural selection shapes unique traits in mammals is a central topic in evolutionary biology. The mammalian order Chiroptera (bats) is attractive for biologists as well as the general public due to their specific traits of extraordinary immunity and inverted resting posture. However, genomic resources for bats that occupy key phylogenetic positions are not sufficient, which hinders comprehensive investigation of the molecular mechanisms underpinning the origin of specific traits in bats. Here, we sequenced the transcriptomes of 5 bats that are phylogenetically divergent and occupy key positions in the phylogenetic tree of bats. In combination with the available genomes of 19 bats and 21 other mammals, we built a database consisting of 10 918 one-to-one ortholog genes and reconstructed phylogenetic relationships of these mammals. We found that genes related to immunity, bone remodeling, and cardiovascular system are targets of natural selection along the ancestral branch of bats. Further analyses revealed that the T cell receptor signaling pathway involved in immune adaptation is specifically enriched in bats. Moreover, molecular adaptations of bone remodeling, cardiovascular system, and balance sensing may help to explain the reverted resting posture in bats. Our study provides valuable transcriptome resources, enabling us to tentatively identify genetic changes associated with bat-specific traits. This work is among the first to advance our understanding of the molecular underpinnings of inverted resting posture in bats, which could provide insight into healthcare applications such as hypertension in humans.


Assuntos
Quirópteros , Humanos , Animais , Quirópteros/genética , Transcriptoma , Filogenia , Mamíferos/genética , Perfilação da Expressão Gênica , Postura , Evolução Molecular
20.
Virol Sin ; 38(6): 868-876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967719

RESUMO

Coronavirus (CoV) spillover originating from game animals, particularly pangolins, is currently a significant concern. Meanwhile, vigilance is urgently needed for coronaviruses carried by bats, which are known as natural reservoirs of many coronaviruses. In this study, we collected 729 anal swabs of 20 different bat species from nine locations in Yunnan and Guangdong provinces, southern China, in 2016 and 2017, and described the molecular characteristics and genetic diversity of alphacoronaviruses (αCoVs) and betacoronaviruses (ßCoVs) found in these bats. Using RT-PCR, we identified 58 (8.0%) bat CoVs in nine bat species from six locations. Furthermore, using the Illumina platform, we obtained two representative full-length genomes of the bat CoVs, namely TyRo-CoV-162275 and TyRo-CoV-162269. Sequence analysis showed that TyRo-CoV-162275 shared the highest identity with Malayan pangolin (Manis javanica) HKU4-related coronaviruses (MjHKU4r-CoVs) from Guangxi Province, whereas TyRo-CoV-162269 was closely related to HKU33-CoV discovered in a greater bamboo bat (Tylonycteris robustula) from Guizhou Province. Notably, TyRo-CoV-162275 has a putative furin protease cleavage site in its S protein and is likely to utilize human dipeptidyl peptidase-4 (hDPP4) as a cell-entry receptor, similar to MERS-CoV. To the best of our knowledge, this is the first report of a bat HKU4r-CoV strain containing a furin protease cleavage site. These findings expand our understanding of coronavirus geographic and host distributions.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Animais , Pangolins , Furina/genética , Filogenia , China , Infecções por Coronavirus/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA