Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nano Lett ; 24(15): 4311-4318, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587210

RESUMO

Chirality as an asymmetric property is prevalent in nature. In physics, the chirality of the elementary particles that make up matter has been widely studied and discussed, and nowadays, the concept has developed into the field of phonons. As an important fundamental excitation in condensed matter physics, phonons are traditionally considered to be linearly polarized and nonchiral. However, in recent years, the chirality of phonons has been revealed and further experimentally verified. The discovery has triggered a series of new explorations and developments in phonon-related physical processes. This Mini-Review provides an overview of the theoretical prediction of chiral phonons and multiple experimental detection methods and highlights the current key issues in the application of chiral phonons in different fields.

2.
Nano Lett ; 24(23): 6889-6896, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38739156

RESUMO

Thermal conductivity is a critical material property in numerous applications, such as those related to thermoelectric devices and heat dissipation. Effectively modulating thermal conductivity has become a great concern in the field of heat conduction. Here, a quantum modulation strategy is proposed to modulate the thermal conductivity/heat flux by exciting targeted phonons. It shows that the thermal conductivity of graphene can be tailored in the range of 1559 W m-1 K-1 (decreased to 49%) to 4093 W m-1 K-1 (increased to 128%), compared with the intrinsic value of 3189 W m-1 K-1. The effects are also observed for graphene nanoribbons and bulk silicon. The results are obtained through both density functional theory calculations and molecular dynamics simulations. This novel modulation strategy may pave the way for quantum heat conduction.

3.
Small ; : e2311125, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342583

RESUMO

Research on 2D materials originally focused on the highly symmetrical materials like graphene, h-BN. Recently, 2D materials with low-symmetry lattice such as PdSe2 have drawn extensive attention, due to the interesting layer-dependent bandgap, promising mechanical properties and excellent thermoelectric performance, etc. In this work, the phonon thermal transport is studied in PdSe2 with a pentagonal fold structure. The thermal conductivity of PdSe2 flakes with different thicknesses ranging from few nanometers to several tens of nanometers is measured through the thermal bridge method, where the thermal conductivity increases from 5.04 W mk-1 for 60 nm PdSe2 to 34.51 W mk-1 for the few-layer one. The atomistic modelings uncover that with the thickness thinning down, the lattice of PdSe2 becomes contracted and the phonon group velocity is enhanced, leading to the abnormal increase in the thermal conductivity. And the upshift of the optical phonon modes contributes to the increase of the thermal conductivity as well by creating less acoustic phonon scattering as the thickness reduces. This study probes the interesting abnormal thickness-dependent thermal transport in 2D materials, which promotes the potential thermal management at nanoscale.

4.
Nat Mater ; 22(3): 322-328, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36781951

RESUMO

Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic-inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials.

5.
Nano Lett ; 23(23): 11266-11271, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37976102

RESUMO

As an ideal platform, both the theoretical prediction and first experimental verification of chiral phonons are based on transition-metal dichalcogenide materials. The manipulation of phonon chirality in these materials will have a profound effect on the study of chiral phonons. In this work, we utilize the sliding ferroelectric effect to realize the phonon chirality manipulation mechanism in transition-metal dichalcogenide materials. Based on first-principles calculations, we find the different manipulation effects of interlayer sliding on the phonon chirality and Berry curvature in bilayer and four-layer MoS2 sliding ferroelectrics. These further affect the phonon angular momentum and magnetization under a temperature gradient and the phonon Hall effect under a magnetic field. Our work connects two emerging fields and opens up a new route to manipulating phonon chirality in transition-metal dichalcogenide materials through the sliding ferroelectric mechanism.

6.
Phys Chem Chem Phys ; 25(27): 18297-18309, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395370

RESUMO

Pre-stretching as a method for directing polymer crystallization offers a promising solution for addressing the limitations of solid polymer electrolytes in flexible batteries at ambient temperatures. In this study, we have investigated the ionic conductivity, mechanical behaviour, and microstructural and thermal properties of polyethylene oxide (PEO)-based polymer electrolytes with varying pre-strain levels. The results indicate that thermal stretching-induced pre-deformation can significantly increase the through-plane ionic conductivity, in-plane strength, stiffness of solid electrolytes, and cell-specific capacity. However, modulus and hardness decrease for pre-stretched films in the thickness direction. Notably, applying 50-80% pre-strain to the PEO matrix composites through thermal stretching may be preferred for improving the electrochemical cycling performance, as it can increase through-plane ionic conductivity by at least 1.6 times while maintaining compressive stiffness at 80% compared to their unstretched counterparts, while the in-plane strength and stiffness can be boosted by 120-140%. Besides, adding nanoceramics contributes to lithiated PEO exhibiting a higher enhancement coefficient than the pristine sample. This positive effect is because the pre-strain and nano-inorganic filler decrease crystallinity and increase the free volume size of pre-stretched PEO-based electrolytes.

7.
Nano Lett ; 22(4): 1688-1693, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35148114

RESUMO

The diode effect means that carriers can only flow in one direction but not the other. While diode effects for electron charge, spin, or photon have been widely discussed, it remains a question whether a chiral phonon diode can be realized, which utilizes the chiral degree of freedom of lattice vibrations. In this work, we reveal an intrinsic connection between the chiralities of a crystal structure and its phonon excitations, which naturally leads to the chiral phonon diode effect in chiral crystals. At a certain frequency, phonons with a definite chirality can propagate only in one direction but not the opposite. We demonstrate the idea in concrete materials including bulk Te and α-quartz (SiO2). Our work discovers the fundamental physics of chirality coupling between different levels of a system, and the predicted effect will provide a new route to control phonon transport and design information devices.

8.
Nano Lett ; 21(7): 3060-3065, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33764075

RESUMO

Chiral phonons were initially proposed and experimentally verified in two-dimensional (2D) systems. Their intriguing effects have generated profound impacts on multiple research fields. However, all chiral phonons reported to date are constrained to be local, in the sense that their group velocities vanish identically. Here, we propose the concept of propagating 3D chiral phonons, which can transport the information on chirality and angular momentum. Guided by the necessary conditions and using first-principles calculations, we demonstrate their existence in WN2. The chirality, group velocity, and pseudoangular momentum are analyzed. Based on their selective coupling with valley electrons and photons, we propose an experimental setup to detect the unique feature of propagating chiral phonons. Our work endows chiral phonons with a crucial character-the ability to propagate and transport quantized information, which creates a new research direction and opens up the possibility to design novel phononic quantum devices.

9.
Nanotechnology ; 31(37): 375705, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32470952

RESUMO

Monolayer beryllium oxide (BeO), a new graphene-like metal oxide material, has attracted tremendous interest since it was demonstrated to have high dynamic, thermal, kinetic and mechanical stabilities in recent years. This discovery enriches the catalogue of 2D materials and paves the way for the exploration of relevant properties. In this work, the electronic and thermal properties of monolayer BeO are predicted by first-principles calculations. Compared with graphene and monolayer hexagonal boron nitride (h-BN), the monolayer BeO is an insulator and its electrons are highly localized around O and Be atoms (ionic nature). More importantly, the thermal conductivity of monolayer BeO is found to be 266 Wm-1K-1 at 300 K, which is lower than that of graphene and h-BN but higher than most other 2D materials. Further spectrum analysis reveals that 75% of the thermal conductivity of monolayer BeO is contributed by phonons with a frequency from 0 to 5.4 THz. With the characteristics of wide bandgap and high thermal conductivity, monolayer BeO shows great potential for applications in electronic device packages and Li-ion batteries.

10.
Nano Lett ; 18(7): 4424-4430, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29936844

RESUMO

Triggered by the recent successful observation of previously predicted phonon chirality in the monolayer tungsten diselenide [ Science 2018 , 359 , 579 ], we systematically study the chiral phonons in the classical heterostructure of graphene/hexagonal boron nitride (G/ h-BN) by first-principles calculations. It is found that the broken inversion symmetry and the interlayer interaction of G/ h-BN not only open the phononic gaps but also lift the degeneracy of left-handed and right-handed chiral phonons at the first-Brillouin-zone corners (valleys). At valleys, the hybridization makes chiral phonon modes solely contributed from one individual layer. Moreover, we demonstrate that the vertical stress is effective to tune the degenerated phononic gap while keeping the valley-phonon chirality of G/ h-BN heterostructure, which is favorable for the Raman or ultrafast infrared spectroscopy measurement. We also analyze the pseudoangular momentum of valley-phonon modes, which provide important references for the excitation and measurement of the chiral phonons in the process of electronic intervalley scattering. Collectively, our results on the chiral phonons in the G/ h-BN heterostructure system could stimulate more experimental and theoretical studies and promote the future applications on the phonon-chirality-based phononics.

11.
Phys Rev Lett ; 115(11): 115502, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406841

RESUMO

In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future.

12.
Cell Biol Int ; 38(10): 1194-204, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890925

RESUMO

Proliferative change and intestinal barrier dysfunction in intestinal mucosa of diabetes have been described, but the differentiation characteristics of intestinal epithelial cells (IECs) and the mechanisms in the IECs development remain unclear. To explore the intestinal epithelial constitution patterns and barrier function, the diabetic mouse model was induced by streptozotocin. Tight junctions between IECs were significantly damaged and the serum level of D-lactate was raised in diabetic mice (P < 0.05). The expression of Zo1 and Ocln in the small intestine of diabetic mice were lower, while the markers for absorptive cell (SI) and Paneth cell (Lyz1) were significantly higher than in control mice (P < 0.05). The expression of Msi1, Notch1, and Dll1 in small intestine gradually increased throughout the course of hyperglycemia in diabetic mice (P < 0.05). However, the expression of NICD, RBP-jκ, Math1, and Hes1 had a reverse trend compared with Msi1 and Notch1. Intestinal absorptive cells and Paneth cells had a high proliferation rate in diabetic mice. However, the intestinal barrier dysfunction associated with the decreased expressions of Zo1 and Ocln was detected throughout hyperglycemia. In conclusion, downregulation of Notch/Hes1 signal pathway caused by depressed Notch/NICD transduction is associated with the abnormal differentiation of IECs and intestinal barrier dysfunction in diabetic mice.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Diabetes Mellitus Experimental , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Permeabilidade da Membrana Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Regulação para Baixo , Proteínas de Homeodomínio/genética , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptor Notch1/genética , Fatores de Transcrição HES-1
13.
Phys Rev E ; 108(1-1): 014125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583191

RESUMO

Utilizing surface roughness to manipulate thermal transport has aided important developments in thermoelectrics and heat dissipation in microelectronics. In this paper, through a multiparticle Lorentz gas model, it is found that thermal conductivity oscillates with the increase of surface roughness, and the oscillating thermal conductivity gradually disappears with the increase of nonlinearity. The transmittance analyses reveal that the oscillating thermal conductivity is caused by localized particles due to boundary effects. Nonlinearity will gradually break the localization. Thus, localization still exists in the weak nonlinear system, where there exists an interplay between nonlinear interaction and localization. Furthermore, it is also found that boundary shapes have a great influence on the oscillating thermal conductivity. Finally, we have also studied the oscillating thermal rectification effects caused by rough boundaries. This study gains insight into the boundary effect on thermal transport and provides a mechanism to manipulate thermal conductivity.

14.
Nanoscale ; 15(3): 1180-1185, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36524588

RESUMO

In this study, based on ab initio calculations and the phonon Boltzmann transport equation, we found that magnetic phase transitions can lead to a significant change in the thermal conductivity of monolayer MnPS3. Around the Néel temperature (78 K) with the antiferromagnetic-paramagnetic (AFM-PM) phase transition, its thermal conductivity increases from 14.89 W mK-1 (AFM phase) to 103.21 W mK-1 (PM phase). Below 78 K, the thermal conductivity of monolayer MnPS3 can be doubled by applying a magnetic field of 4 T, this value has been reported in a previous experiment for the antiferromagnetic-ferromagnetic (AFM-FM) phase transition. Above 78 K, the thermal conductivity of PM phase can be greatly reduced through the PM-AFM magnetic phase transition. In addition to the value of thermal conductivity, the relative contribution ratio between acoustic and optical modes changes with different magnetic phases. The subsequent analyses demonstrate that this regulation originates from the change in lattice parameter, bonding interaction and phonon anharmonicity. In addition, the different effect on the thermal conductivity between the FM and AFM phases was identified by comparing the corresponding phonon scattering characteristics. This study should shed light on the understanding of phonon thermal conductivity in 2D magnets, and provide a practical method for the realization of 2D thermal switching devices, which would enable a broad range of novel applications including energy conversion and thermal management.

15.
Nanoscale ; 15(19): 8654-8661, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37102613

RESUMO

The recently reported two-dimensional Janus transition metal dichalcogenide materials present promising applications such as in transistors, photocatalysts, and thermoelectric nanodevices. In this work, using molecular dynamics simulations, the self-assembled in-plane MoSSe/WSSe heterostructure superlattice is predicted with a natural sinusoidal structure constructed by an asymmetric interface. Such a sinusoidal structure shows extraordinary mechanical behavior where the fracture strain can be enhanced up to 4.7 times than that of the symmetrical interface. Besides, the deformational structure of all these MoSSe/WSSe heterostructure superlattice are in accordance with the Fourier function curve; the fracture strength and fracture strain also demonstrate pronounced size dependence. Our investigations proposed an ultrastretchable assembled heterostructure superlattice and provided a desirable strategy to tune the mechanical properties of such an in-plane two-dimensional heterostructure.

16.
Science ; 382(6676): 1265-1269, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096375

RESUMO

Effective control of heat transfer is vital for energy saving and carbon emission reduction. In contrast to achievements in electrical conduction, active control of heat transfer is much more challenging. Ferroelectrics are promising candidates for thermal switching as a result of their tunable domain structures. However, switching ratios in ferroelectrics are low (<1.2). We report that high-quality antiferroelectric PbZrO3 epitaxial thin films exhibit high-contrast (>2.2), fast-speed (<150 nanoseconds), and long-lifetime (>107) thermal switching under a small voltage (<10 V). In situ reciprocal space mapping and atomistic modelings reveal that the field-driven antiferroelectric-ferroelectric phase transition induces a substantial change of primitive cell size, which modulates phonon-phonon scattering phase space drastically and results in high switching ratio. These results advance the concept of thermal transport control in ferroic materials.

17.
J Phys Condens Matter ; 35(5)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36541482

RESUMO

Heat dissipation is crucial important for the performance and lifetime for highly integrated electronics, Li-ion battery-based devices and so on, which lies in the decrease of interfacial thermal resistance (ITR). To achieve this goal, introducing interlayer is the most widely used strategy in industry, which has attracted tremendous attention from researchers. In this review, we focus on bonding effect and bridging effect to illustrate how introduced interlayer decreases ITR. The behind mechanisms and theoretical understanding of these two effects are clearly illustrated. Simulative and experimental studies toward utilizing these two effects to decrease ITR of real materials and practical systems are reviewed. Specifically, the mechanisms and design rules for the newly emerged graded interlayers are discussed. The optimization of interlayers by machine learning algorithms are reviewed. Based on present researches, challenges and possible future directions about this topic are discussed.

18.
J Phys Condens Matter ; 33(28)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33915530

RESUMO

Controlling phonon transport via its wave nature in nanostructures can achieve unique properties for various applications. In this paper, thermal conductivity of heterogeneous nano cross junction (hetero-NCJ) is studied through molecular dynamics simulation. It is found that decreasing or increasing the atomic mass of four side wires (SWs) severed as resonators, thermal conductivity of hetero-NCJ is enhanced, which is larger than that of homogeneous NCJ (homo-NCJ). Interestingly, by setting two SWs with larger atomic mass and other two SWs with smaller atomic mass, thermal conductivity of hetero-NCJ is abnormally decreased, which is even smaller than that of homo-NCJ. After further non-equilibrium Green's function calculations, it is demonstrated that origin of increase is attributed to the hybridization broken induced by unidirectional shift of resonant modes. However, the decrease in thermal conductivity originates from hybridization complementation induced by bidirectional shift of resonant modes, which synergistically blocks phonon transport. This work provides a mechanism for further strengthening resonant hybridization effect and manipulating thermal transport.

19.
Phys Rev E ; 104(2-1): 024801, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525599

RESUMO

Poor heat dissipation caused by interface thermal resistance (ITR, or Kapitza resistance) has long been the bottleneck that limits the further miniaturization of integrated circuit. In this paper, different from previous studies on ITR induced by conjunction of two different materials, the ITR of a homogeneous stepped system is studied through the multiparticle Lorentz gas model. It is found that ITR can be triggered by pure geometric shape mismatch, and decreases when the degree of mismatch decreases. The ITRs for forward and backward transport are asymmetrical; thus, thermal rectification effect is also obtained in this system. Moreover, the effects of absolute width, width ratio, mean temperature, and temperature difference on ITR and thermal rectification effect are discussed. The ITR induced by geometric shape mismatch provides physics for interfacial thermal transport.

20.
Phys Rev E ; 103(5-1): 052135, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134301

RESUMO

Ballistic thermal rectification is of significance for the management of thermal transport at the nanoscale since the size of thermal devices shrinks down to the phonon mean free path. By using the single-particle Lorentz gas model, the ballistic thermal transport in asymmetric homojunctions is investigated. The ballistic thermal rectification of the asymmetric rectangular homojunction is enhanced by the increasing structural asymmetry. A hyperbolic tangent profile is introduced to the interface to study the effect of interface steepness on thermal transport. We find that the thermal rectification ratio increases with the decreasing interface steepness, indicating that a gradual interface is of benefit to increase the thermal rectification. Moreover, the thermal rectification of the asymmetric homojunction can be improved by either increasing the temperature gradient or decreasing the average temperature of two heat sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA