Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705401

RESUMO

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavonas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/toxicidade , Ácido Palmítico/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Flavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Langmuir ; 38(12): 3868-3875, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35298179

RESUMO

The development of isothermal nucleic acid amplification techniques has great significance for highly sensitive biosensing in modern biology and biomedicine. A facile and robust exponential rolling circle amplification (RCA) strategy is proposed based on primer-remodeling amplification jointly via a repair enzyme and polymerase, and uracil-DNA glycosylase (UDG) is selected as a model analyte. Two kinds of complexes, complex I and complex II, are preprepared by hybridizing a circular template (CT) with a uracil-containing hairpin probe and tetrahydrofuran abasic site mimic (AP site)-embedded fluorescence-quenched probe (AFP), respectively. The target UDG specifically binds to complex I, resulting in the generation of an AP site, followed by cleavage via endonuclease IV (Endo IV) and the successive trimming of unmatched 3' terminus via phi29 DNA polymerase, thus producing a useable primer-CT complex that actuates the primary RCA. Then, numerous complex II anneal with the first-generation RCA product (RP), generating a complex II-RP assembly containing AP sites within the DNA duplex. With the aid of Endo IV and phi29, AFP, as a pre-primer in complex II, is converted into a mature primer to initiate additional rounds of RCA. So, countless AFPs are cleaved, releasing remarkably strong fluorescent signals. The biosensor is demonstrated to enable rapid and accurate detection of the UDG activity with an improved detection limit as low as 4.7 × 10-5 U·mL-1. Moreover, this biosensor is successfully applied for UDG inhibitor screening and complicated biological samples analysis. Compared to the previous exponential RCA methods, our proposed strategy offers additional advantages, including excellent stability, optional design of CT, and simplified operating steps. Therefore, this proposed strategy may create a useful and practical platform for ultrasensitive detection of low levels of analytes in clinical diagnosis and fundamental biomedicine research.


Assuntos
Técnicas Biossensoriais , Uracila-DNA Glicosidase , Técnicas Biossensoriais/métodos , Reparo do DNA , Corantes Fluorescentes , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Uracila-DNA Glicosidase/análise , Uracila-DNA Glicosidase/metabolismo , alfa-Fetoproteínas
3.
Anal Chem ; 93(36): 12383-12390, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34449197

RESUMO

Circulating extracellular vesicles (EVs) are promising biomarkers for the early diagnosis and prognosis of cancer in a non-invasive manner. However, the rapid and accurate identification of EVs in complex biological samples is technically challenging, which is attributed to the requirement of extensive sample purification and unsatisfactory detection accuracy due to the disturbance of interfering proteins. Herein, a simultaneous binding of double-positive EV membrane protein-based recognition mode (DRM) is proposed. By the combination of DRM-mediated toehold activation and G-quadruplex DNAZyme-catalyzed etching of Au@Ag nanorods (Au@Ag NRs), we have developed an accurate, non-purified, low-cost, and visual strategy for EV identification. The synchronous binding of double-positive proteins on EV membranes is validated by confocal laser scanning microscopy analysis. This approach exhibits excellent specificity and sensitivity toward EVs ranging from 1.0 × 105 to 1.0 × 109 particles/mL with a detection limit of 6.31 × 104 particles/mL. Moreover, we have successfully realized non-purified EV quantification in complex biological media. In addition, target-initiated catalyzed hairpin assembly (CHA) is integrated with G-quadruplex DNAZyme-catalyzed color variation of Au@Ag NRs; thus, low-background EV detection can be achieved by the naked eye. Furthermore, our strategy is easy to adapt to high-throughput formats by using an automatic microplate reader, which could be expected to meet the requirements for high-throughput detection of clinical samples. With its capacities of rapidness, portability, affordability, high throughput, non-purification, and visual detection, this strategy could provide a practical tool for accurate identification of EVs and early diagnosis of cancer.


Assuntos
DNA Catalítico , Vesículas Extracelulares , Quadruplex G , Nanotubos , Neoplasias , Humanos
4.
Analyst ; 146(17): 5413-5420, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34346408

RESUMO

In this study, a novel, rapid and ultrasensitive fluorescence strategy using the three-dimensional (3D) dynamic DNA walker (DW)-induced branched hybridization chain reaction (bHCR) has been proposed for the detection of ampicillin (AMP). The sensing system was composed of an Nt·Bbvcl-powered DNA walker blocked by an AMP aptamer, hairpin-shaped DNA track probe (TP) and four kinds of metastable hairpin probes as the substrates of bHCR, which triggered the formation of the split G-quadruplex as the signal molecule. Due to the reasonable design, the specific binding between AMP and its aptamer activated the DW, and the DW moved on the surface of the gold nanoparticles (AuNPs) with the help of Nt·Bbvcl to produce primer probes (PPs), which induced bHCR. The products of the bHCR gathered two split G-quadruplex sequences together to form one complete G-quadruplex. The formed G-quadruplex emitted a strong fluorescence signal in the presence of thioflavin-T (ThT) to achieve the purpose of detecting AMP. The sensitivity of this method was greatly improved by the use of the 3D DNA walker and bHCR. The split G-quadruplex enhanced the signal-to-noise ratio (SNR). Under the optimal experimental conditions, a good correlation was obtained between the fluorescence intensity of the sensing system and the concentration of AMP ranging from 5 pM to 500 nM with a limit of detection (LOD) of 3.68 pM. Simultaneously, the method has been applied to the detection of antibiotics in spiked milk samples with satisfactory results.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Nanopartículas Metálicas , Ampicilina , DNA/genética , Ouro , Limite de Detecção , Hibridização de Ácido Nucleico
5.
Mikrochim Acta ; 188(8): 255, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264390

RESUMO

As an extremely important post-transcriptional regulator, miRNAs are involved in a variety of crucial biological processes, and the abnormal expressions of miRNAs are closely related to a variety of diseases. In this work, for the first time, we designed a nucleic acid lock nanostructure for specific detection of miRNA-21, which changes the self-structure to "active conformation" by binding the target, in order to generate triggers to initiate the subsequent reaction. Emphatically, this flexible nucleic acid lock is capable of self-cleaving without the assistance of external component, overcoming the disadvantages of the complex design and requiring protease assistance in traditional nanostructure. Moreover, the combination of DNAzyme and RCA technology not only greatly improves the efficiency of signal amplification but also enables primer generation to simultaneous cascade RCA amplification. Additionally, the electrochemical detection technology based on silver nanoclusters overcomes the shortcomings of traditional detection methods such as low sensitivity and complex operation. The detection limit achieved was 9.3 aM with a wide dynamic response ranging from 10 aM to 100 pM (at the DPV peak of - 0.5 V), which is comparable to most of the reported studies. Therefore, our work provided an ultra-sensitive way for the detection of miRNAs using nanostructures and revealed an effective means for disease theranostics and cancer diagnosis. In this work, for the first time, we designed a nucleic acid lock nanostructure based on its self-structural transformation for the specific detection of miRNA. And the combination of DNAzyme and cascade RCA reaction greatly improved the signal amplification efficiency.


Assuntos
DNA Catalítico/química , DNA/química , MicroRNAs/química , Sequência de Bases , Técnicas Biossensoriais , Técnicas Eletroquímicas , Células HeLa , Humanos , Limite de Detecção , Células MCF-7 , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico , Prata/química
7.
Anal Chim Acta ; 1242: 340782, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657887

RESUMO

Ochratoxin A (OTA) is the most toxic class of ochratoxins and has become a major threat to the environment, humans and animals. Therefore, research on the methods for its detection is also more urgent. Herein, we propose a low-background electrochemical biosensor based on a DNA tetrahedron-besieged primer and a DNAzyme-activated programmatic rolling circle amplification (RCA) that can be ultimately utilized for OTA detection in wine samples. Low-background detection can be achieved using the besieged primer via sequenced assembly of DNA tetrahedral nanostructures so that non-specific extensions of primer can be avoided. The target OTA-mediated DNAzyme activation initiates the programmatic RCA. Additionally, the catalytic property of silver nanoclusters (AgNCs) is integrated with the electrochemical assay to achieve high sensitivity for OTA detection. Benefiting from the aforementioned processes, a low-background, and highly sensitive electrochemical biosensor has been successfully constructed. This design is capable of detecting OTA at concentrations from 1 pg/mL to 10 ng/mL, and its lowest concentration limit is 0.773 pg/mL. Simultaneously, its validation in the detection of actual samples reveals that the proposed electrochemical biosensor has a lot of potential in food safety and environmental detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Ocratoxinas , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Primers do DNA , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ocratoxinas/análise
8.
Talanta ; 252: 123833, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057165

RESUMO

Statistics show that food poisoning caused by Salmonella typhimurium (S. Typhimurium) often tops the list of bacterial food poisoning types in countries around the world. However, detecting traces of S. Typhimurium in real samples remains challenging. In recent years, primer exchange reaction (PER), a new isothermal amplification strategy, has rapidly attracted the attention of researchers in the field of biosensing. In this work, We developed a nanostructure called DNA arch bridge (DAB) and combined the DAB with cascade PER technology to construct a novel bidirectional PER (B-PER) for ultra-sensitive detection of pathogenic bacteria as a novel fluorescent biosensor. This strategy relies on the B-PER reaction mediated by binding of the target and adaptor, which occurs with the assistance of Klenow Fragment (KF) (3'-5'exo) polymerase and produces a good deal of G-quadruplex sequences that generate a fluorescent signal by embedding fluorescent dyes. Under the best conditions, the biosensor achieves ultrasensitive detection of S. Typhimurium, and the detection limit of the strategy is 9.3 cfu mL-1 over the linear detection scope of 101-105 cfu mL-1. The method has the merits of facile operation, rapid response, and high sensitivity. Furthermore, the biosensor is expected to achieve ultrasensitive detection of various small molecules through recognizing different target and primer sequences. Therefore, our proposed strategy provides an efficient, stable, universal, and practical sensing platform for pathogen and other small molecules detection.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Humanos , Salmonella typhimurium/genética , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , DNA/genética , Corantes Fluorescentes/química
9.
Free Radic Biol Med ; 198: 83-91, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764626

RESUMO

The relationship between mitochondrial dysfunction and cardiovascular disease pathogenesis is well recognized. 7,8-Dihydroxyflavone (7,8-DHF), a mimetic of brain-derived neurotrophic factor, inhibits mitochondrial impairments and improves cardiac function. However, the regulatory role of 7,8-DHF in the mitochondrial function of cardiomyocytes is not fully understood. To investigate the potential mito-protective effects of 7,8-DHF in cardiomyocytes, we treated H9c2 or HL-1 cells with the mitochondrial respiratory complex I inhibitor rotenone (Rot) as an in vitro model of mitochondrial dysfunction. We found that 7,8-DHF effectively eliminated various concentrations of Rot-induced cell death and reduced lactate dehydrogenase release. 7,8-DHF significantly improved mitochondrial membrane potential and inhibited mitochondrial reactive oxygen species. Moreover, 7,8-DHF decreased routine and leak respiration, restored protein levels of mitochondrial complex I-IV, and increased ATP production in Rot-treated H9c2 cells. The protective role of 7,8-DHF in Rot-induced damage was validated in HL-1 cells. Nuclear phosphorylation protein expression of signal transducer and activator of transcription 3 (STAT3) was significantly increased by 7,8-DHF. The present study suggests that 7,8-DHF rescues Rot-induced cytotoxicity by inhibiting mitochondrial dysfunction and promoting nuclear translocation of p-STAT3 in cardiomyocytes, thus nominating 7,8-DHF as a new pharmacological candidate agent against mitochondrial dysfunction in cardiac diseases.


Assuntos
Miócitos Cardíacos , Rotenona , Miócitos Cardíacos/metabolismo , Rotenona/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Mitocôndrias/metabolismo
10.
Cell Signal ; 112: 110924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838311

RESUMO

Clinical application of the widely used chemotherapeutic agent, doxorubicin (DOX), is limited by its cardiotoxicity. Mitochondrial dysfunction has been revealed as a crucial factor in DOX-induced cardiotoxicity. 7,8,3'-Trihydroxyflavone (THF) is a mimetic brain-derived neurotrophic factor with neuroprotective effects. However, the potential effects of THF on DOX-induced cardiomyocyte damage and mitochondrial disorders remain unclear. H9c2 cardiomyoblasts were exposed to DOX and/or THF at different concentrations. Cardiomyocyte injury was evaluated using lactate dehydrogenase (LDH) assay and Live/Dead cytotoxicity kit. Meanwhile, mitochondrial membrane potential (MMP), morphology, mitochondrial reactive oxygen species (mito-ROS) production, and the oxygen consumption rate of cardiomyocytes were measured. The protein levels of key mitochondria-related factors such as adenosine monophosphate-activated protein kinase (AMPK), mitofusin 2 (Mfn2), dynamin-related protein 1 (Drp1), and optic atrophy protein 1 (OPA1) were examined. We found that THF reduced LDH content and death ratio of DOX-treated cardiomyocytes in a concentration-dependent manner, while increasing MMP without significantly affecting the routine and maximum capacity of mitochondrial respiration. Mechanistically, THF increased the activity of Akt and protein levels of Mfn2 and heme oxygenase 1 (HO-1). Moreover, inhibition of Akt reversed the protective role of THF, increased mito-ROS levels, and repressed Mfn2 and HO-1 expression. Therefore, we conclude, THF relieves DOX-induced cardiotoxicity and improves mitochondrial function by activating Akt-mediated Mfn2 and HO-1 pathways. This finding provides promising therapeutic insights for DOX-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade/metabolismo , Transdução de Sinais , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Estresse Oxidativo
11.
Anal Chim Acta ; 1218: 340010, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35701040

RESUMO

Uracil-DNA glycosylase (UDG) is a common glycosylase that can expressly recognize and remove damaged uracil bases, and the ultrasensitive detection of which is significant to maintain genomic stability and early clinical diagnosis of disease. Herein, we proposed a sensitive colorimetric sensing platform to detect UDG. Combined with target-manipulated drawstring DNAzyme and Au@Ag nanorods (Au@Ag NRs) indicator, we achieved in naked-eyes observation and ultrasensitive detection of UDG. Briefly, when the UDG exists, the dynamic reaction of rope pulling will occur generating the active conformation of DNAzyme. The cutting effect will be further produced when we add Mg2+, thus the generated trigger chain can mediate the occurrence of CHA reaction, followed by generating amount of ·OH which can etch Au@Ag NRs causing the shifted of localized surface plasmon resonance (LSPR) peak. By contrast, there is no obvious shift of LSPR peak. This strategy shows extraordinary specificity and sensitivity toward UDG providing a detection limit of 4.6 × 10-5 U mL-1. By using of this method, we detected UDG specifically in complex samples, proving that it's potential applications in biomedical research and clinical diagnosis are fantastic.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanotubos , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Uracila-DNA Glicosidase
12.
J Geriatr Cardiol ; 19(11): 853-866, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36561053

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is a compensated response to various stimuli and is considered a key risk factor for heart failure. 7,8-Dihydroxyflavone (7,8-DHF) is a flavonoid derivative that acts as a small-molecule brain-derived neurotrophic factor mimetic. The present study aimed to explore the potential role of 7,8-DHF in cardiac hypertrophy. METHODS: Kunming mice and H9c2 cells were exposed to transverse aortic constriction or isoproterenol (ISO) with or without 7,8-DHF, respectively. F-actin staining was performed to calculate the cell area. Transcriptional levels of hypertrophic markers, including ANP, BNP, and ß-MHC, were detected. Echocardiography, hematoxylin-eosin staining, and transmission electron microscopy were used to examine the cardiac function, histology, and ultrastructure of ventricles. Protein levels of mitochondria-related factors, such as adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), were detected. RESULTS: 7,8-DHF inhibited compensated and decompensated cardiac hypertrophy, diminished the cross-sectional area, and alleviated the mitochondrial disorders of cardiomyocytes. Meanwhile, 7,8-DHF reduced the cell size and repressed the mRNA levels of the hypertrophic markers of ISO-treated cardiomyocytes. In addition, 7,8-DHF activated AMPK and PGC-1α signals without affecting the protein levels of mitochondrial dynamics-related molecules. The effects of 7,8-DHF were eliminanted by Compound C, an AMPK inhibitor. CONCLUSIONS: These findings suggest that 7,8-DHF inhibited cardiac hypertrophy and mitochondrial dysfunction by activating AMPK signaling, providing a potential agent for the treatment of pathological cardiac hypertrophy.

13.
Anal Chim Acta ; 1143: 21-30, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384119

RESUMO

DNA walkers, as intelligent artificial DNA nanomachines, have been widely used as efficient nucleic acid amplification tools that the detection sensitivity can be improved by incorporating DNA walkers into DNA biosensors. Nevertheless, since the premature release or flameout in a region of locally exhausted substrate, the walking efficiency of DNA walkers remains unsatisfactory. In this work, we design a smart tripedal DNA walker that is formed by target-initiated catalyzed hairpin assembly (CHA), which can move along the DNA duplex tracks on electrode driven by toehold-mediated DNA strand displacement (TMSD) for transduction and amplification of electrochemical signals. Emphatically, this flexible tripedal DNA walker is capable of walking freely along the tracks with unconstrained walking range. Moreover, the design of multi-legged walker can weaken the derailment of leg DNA and shorten the moving time on electrode, ensuring the processive walking with high efficiency. Additionally, the persistent walking of tripedal walker is driven by cascading TMSD, which eliminates the defects of high cost and instability of enzyme-assisted amplification technology. Therefore, the tripedal DNA walker-based electrochemical biosensor has enormous potential for the applications of OTA detection, and reveals a new avenue for food safety analysis and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , DNA , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Ocratoxinas , Andadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA