Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Angew Chem Int Ed Engl ; 63(9): e202317514, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179807

RESUMO

In this study, we highlight the impact of catalyst geometry on the formation of O-O bonds in Cu2 and Fe2 catalysts. A series of Cu2 complexes with diverse linkers are designed as electrocatalysts for water oxidation. Interestingly, the catalytic performance of these Cu2 complexes is enhanced as their molecular skeletons become more rigid, which contrasts with the behavior observed in our previous investigation with Fe2 analogs. Moreover, mechanistic studies reveal that the reactivity of the bridging O atom results in distinct pathways for O-O bond formation in Cu2 and Fe2 catalysts. In Cu2 systems, the coupling takes place between a terminal CuIII -OH and a bridging µ-O⋅ radical. Whereas in Fe2 systems, it involves the coupling of two terminal Fe-oxo entities. Furthermore, an in-depth structure-activity analysis uncovers the spatial geometric prerequisites for the coupling of the terminal OH with the bridging µ-O⋅ radical, ultimately leading to the O-O bond formation. Overall, this study emphasizes the critical role of precisely adjusting the spatial geometry of catalysts to align with the O-O bonding pathway.

2.
Angew Chem Int Ed Engl ; 62(48): e202310775, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37837365

RESUMO

We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII (bpbp)(µ-OAc)2 FeIII ]2+ , CuFe-OAc), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103  s-1 and selectivity of 96.0 % in the presence of Et3 NH+ . This performance significantly outcompetes its homobimetallic analogues (2.7 s-1 of CuCu-OAc with %H2 O2 selectivity of 98.9 %, and inactive of FeFe-OAc) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O-O bond cleavage via a CuII (µ-η1 : η2 -O2 )FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.

3.
Angew Chem Int Ed Engl ; 62(18): e202218859, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869660

RESUMO

We reported herein the development of heterobimetallic NiFe molecular platform to understand NiFe synergistic effect in water oxidation catalysis. Compared to homonuclear bimetallic compounds (NiNi and FeFe), NiFe complex possesses more remarkable catalytic water oxidation performance. Mechanistic studies suggest that this remarkable difference is attributed to the fact that NiFe synergy can effectively promote O-O bond formation. The generated NiIII (µ-O)FeIV =O is the key intermediate and O-O bond was formed via intramolecular oxyl-oxo coupling between bridged O radical and terminal FeIV =O moiety.

4.
J Am Chem Soc ; 144(27): 12459-12468, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776107

RESUMO

The proton-coupled electron transfer (PCET) reaction has drawn extensive attention for its widespread occurrence in chemistry, biology, and materials science. The mechanistic studies via model systems such as tyrosine and phenol oxidation have gradually deepened the understanding of PCET reactions, which was widely accepted and applied to bond activation and transformation. However, direct PCET activation of nonpolar bonds such as the C-H bond, O2, and N2 has yet to be explored. Herein, we report that the interaction between electron donor and proton donor could overcome the barrier of direct O2 activation via a concerted electron-proton transfer mechanism. This work provides a new strategy for developing direct PCET activation of nonpolar bonds.


Assuntos
Elétrons , Prótons , Transporte de Elétrons , Oxirredução , Oxigênio
5.
J Am Chem Soc ; 144(39): 17748-17752, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149317

RESUMO

Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.


Assuntos
Metais , Água , Catálise , Cobalto , Ligantes , Espectrometria de Massas , Oxirredução , Água/química
6.
J Am Chem Soc ; 143(47): 19761-19768, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793144

RESUMO

Solar-powered water splitting is a dream reaction for constructing an artificial photosynthetic system for producing solar fuels. Natural photosystem II is a prototype template for research on artificial solar energy conversion by oxidizing water into molecular oxygen and supplying four electrons for fuel production. Although a range of synthetic molecular water oxidation catalysts have been developed, the understanding of O-O bond formation in this multielectron and multiproton catalytic process is limited, and thus water oxidation is still a big challenge. Herein, we report a trinuclear copper cluster that displays outstanding reactivity toward catalytic water oxidation inspired by multicopper oxidases (MCOs), which provides efficient catalytic four-electron reduction of O2 to water. This synthetic mimic exhibits a turnover frequency of 20000 s-1 in sodium bicarbonate solution, which is about 150 and 15 times higher than that of the mononuclear Cu catalyst (F-N2O2Cu, 131.6 s-1) and binuclear Cu2 complex (HappCu2, 1375 s-1), respectively. This work shows that the cooperation between multiple metals is an effective strategy to regulate the formation of O-O bond in water oxidation catalysis.

7.
Angew Chem Int Ed Engl ; 60(22): 12467-12474, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33769654

RESUMO

Herein, we report the importance of structure regulation on the O-O bond formation process in binuclear iron catalysts. Three complexes, [Fe2 (µ-O)(OH2 )2 (TPA)2 ]4+ (1), [Fe2 (µ-O)(OH2 )2 (6-HPA)]4+ (2) and [Fe2 (µ-O)(OH2 )2 (BPMAN)]4+ (3), have been designed as electrocatalysts for water oxidation in 0.1 M NaHCO3 solution (pH 8.4). We found that 1 and 2 are molecular catalysts and that O-O bond formation proceeds via oxo-oxo coupling rather than by the water nucleophilic attack (WNA) pathway. In contrast, complex 3 displays negligible catalytic activity. DFT calculations suggested that the anti to syn isomerization of the two high-valent Fe=O moieties in these catalysts takes place via the axial rotation of one Fe=O unit around the Fe-O-Fe center. This is followed by the O-O bond formation via an oxo-oxo coupling pathway at the FeIV FeIV state or via oxo-oxyl coupling pathway at the FeIV FeV state. Importantly, the rigid BPMAN ligand in complex 3 limits the anti to syn isomerization and axial rotation of the Fe=O moiety, which accounts for the negligible catalytic activity.

8.
Aquaculture ; 520: 734969, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287459

RESUMO

The grass carp accounts for a large proportion of aquacultural production in China, but the hemorrhagic disease caused by grass carp reovirus (GCRV) infection often causes huge economic losses to the industry. Interleukin 17 (IL-17) is an important cytokine that plays a critical role in the inflammatory and immune responses. Although IL-17 family members have been extensively studied in mammals, our knowledge of the activity of IL-17 proteins in teleosts in response to viral infection is still limited. In this study, the role of IL-17 in GCRV infection and its mechanism were investigated. The expression levels of IL-17AF1, IL-17AF2, and IL-17AF3 in Ctenopharyngodon idella kidney (CIK) cells gradually increased from 6 h after infection with GCRV. The nuclear translocation of p65, which acts in the NF-κB signaling pathway, was also increased by GCRV infection. The overexpression of IL-17AF1, IL-17AF2, or IL-17AF3 also promoted the nuclear translocation of p65 and the levels of phospho-IκBα in CIK cells, and reduced the expression of the viral structural protein VP7. An NF-κB signal inhibitor abolished the inhibition of GCRV infection by IL-17 proteins. These results suggested that the NF-κB signaling pathway was activated by the overexpression of IL-17 proteins, resulting in the inhibition of viral infection. In conclusion, in this study, we demonstrated that IL-17AF1, IL-17AF2, and IL-17AF3 acted as immune cytokines, exerting an antiviral effect by activating the NF-κB signaling pathway.

9.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429066

RESUMO

Nonylphenol (NP) is an alkylphenol that is widely used in chemical manufacturing. Exposure to this toxic environmental contaminant has been shown to negatively affect the reproductive system. Herein, we evaluated the toxicity of NP in mouse testes, while using in vitro organ culture. Mouse testicular fragments (MTFs), derived from five-day postpartum neonatal mouse testes, were exposed to different concentrations of NP (1-50 µM) for 30 days. The results showed that NP impaired germ cell development and maintenance. Furthermore, NP significantly downregulated the transcript levels of both undifferentiated and differentiated germ cell marker genes relative to those in controls. In particular, a high dose of NP (50 µM) led to complete germ cell depletion and resulted in spermatogenic failure, despite the presence of Sertoli and Leydig cells. In addition, the mRNA expression of steroidogenic enzymes, such as steroidogenic acute regulatory protein (STAR), Cytochrome P450 Family 11 Subfamily A Member 1 (Cyp11α1), Cytochrome P450 17A1 (Cyp17α1), and androgen receptor (AR), increased with increasing concentration of NP. Conversely, the expression of estrogen receptor alpha (ESR1) and Cytochrome P450 family 19 subfamily A member 1 (Cyp19α1) in NP-exposed MTFs decreased when compared to that of the control. Taken together, this study demonstrates that NP has a negative effect on prepubertal spermatogenesis and germ cell maintenance and it disrupts steroidogenesis and induces hormonal imbalance in MTFs.


Assuntos
Técnicas de Cultura de Órgãos , Fenóis/toxicidade , Testículo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Feminino , Feto/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Testículo/efeitos dos fármacos , Testículo/embriologia
10.
Angew Chem Int Ed Engl ; 59(10): 4000-4008, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880387

RESUMO

Water splitting is one of the most promising solutions for storing solar energy in a chemical bond. Water oxidation is still the bottleneck step because of its inherent difficulty and the limited understanding of the O-O bond formation mechanism. Molecular catalysts provide a platform for understanding this process in depth and have received wide attention since the first Ru-based catalyst was reported in 1982. RuV =O is considered a key intermediate to initiate the O-O bond formation through either a water nucleophilic attack (WNA) pathway or a bimolecular coupling (I2M) pathway. Herein, we report a Ru-based catalyst that displays water oxidation reactivity with RuIV =(O) with the help of a redox-active ligand at pH 7.0. The results of electrochemical studies and DFT calculations disclose that ligand oxidation could significantly improve the reactivity of RuIV =O toward water oxidation. Under these conditions, sustained water oxidation catalysis occurs at reasonable rates with low overpotential (ca. 183 mV).

11.
Fish Shellfish Immunol ; 92: 101-110, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31163296

RESUMO

Cyprinid herpesvirus II (CyHV-2) is highly contagious and pathogenic to Carassius auratus gibelio (gibel carp), causing enormous economic losses in aquaculture in Yancheng city, Jiangsu province, China; however, to date, there is no effective way to protect C. auratus gibelio from CyHV-2 infection. In this study, a recombinant baculovirus vector vaccine, BacCarassius-D4ORFs, containing a fused codon-optimized sequence D4ORFs comprising the ORF72 (region 1-186 nt), ORF66 (region 993-1197 nt), ORF81 (region 603-783 nt) and ORF82 (region 85-186 nt) genes of CyHV-2, driven by a Megalobrama amblycephala ß-actin promoter, was constructed. Then, qPCR, Western blotting and immunofluorescence assays showed that the fused gene D4ORFs was successfully delivered and expressed in fish cells or tissues by transduction with BacCarassius-D4ORFs. The fused gene D4ORFs could not be detected by PCR in the C. auratus gibelio injected with BacCarassius-D4ORFs after 7 weeks. Specific antibody against ORF72 could be detected in the serum of vaccinated C. auratus gibelio by injection with BacCarassius-D4ORFs. Furthermore, when C. auratus gibelio were vaccinated with BacCarassius-D4ORFs via the oral or injection route, followed by challenge with CyHV-2, the relative survival rate of immunized C. auratus gibelio reached 59.3% and 80.01%, respectively. These results suggested that BacCarassius-D4ORFs has the potential to be used as a vector-based vaccine for the prevention and treatment of disease caused by CyHV-2 infection.


Assuntos
Doenças dos Peixes/prevenção & controle , Carpa Dourada/imunologia , Herpesviridae/imunologia , Vacinas contra Herpesvirus/imunologia , Animais , Genes Virais , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Fases de Leitura Aberta , Vacinas Atenuadas/imunologia
12.
Fish Shellfish Immunol ; 94: 50-57, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470136

RESUMO

Circular RNAs (circRNAs) with regulatory potency activity was identified from varieties of species. Crucian carp (Carassius auratus gibelio) is one of the most freshwater aquaculture species in China. Every year, huge economic damage to the farming was caused by the virus and bacterial infection. Until now, there is any information about circRNA reported from the Crucian carp. In this study, the expression pattern of circRNA in Crucian carp was investigated with transcriptomic analysis. The results showed that only 37 circRNAs were identified from the Crucian carp, and these circRNAs biogenesis was formed with canonical GU-AG splicing mechanism with unevenly distributed on the chromosomes. Wherein, most of the circRNAs were derived from the sense overlapping strategy. Reverse transcript PCR and Sanger sequencing data indicated that these circRNAs were existed authenticity in Crucian carp. The bioinformatics analysis indicated that circRNAs identified from the Crucian carp with potential miRNA sponge regulate the expression level of mRNAs. GO annotation and KEGG pathway analysis of these circRNAs showed that more than 20% circRNAs were related with catalytic activity and binding in the category of molecular function, and these circRNAs were enriched in 9 signaling pathways, such as, Wnt signaling pathway, MAPK signaling pathway, Ubiquitin mediated proteolysis et al. 220 mRNAs would be regulated by the circRNAs via miRNAs mediation. These target mRNAs were further analyzed with functional annotation and KEGG analysis. GO annotation analysis showed that several genes were related with function of nucleotide binding, transcription regulatory activity. KEGG pathway analysis showed that 5 genes were enriched in the pathway of Endocytosis. The circRNA-miRNA-mRNA regulation network indicated that one miRNA can link one or more circRNA and one or more mRNA. Overall, these results will not only help us to further understand the novel RNA transcripts in Crucian carp, but also provide the novel clue to investigate the interaction between host and pathogens from this novel circRNA molecule.


Assuntos
Carpas/genética , RNA Circular/genética , Transdução de Sinais/imunologia , Animais , Sequência de Bases , Carpas/imunologia , Biologia Computacional , Perfilação da Expressão Gênica/veterinária , RNA Circular/imunologia , RNA Circular/metabolismo , Transdução de Sinais/genética
13.
Toxicol Mech Methods ; 29(8): 623-631, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31345089

RESUMO

The reproductive toxicity of 4-octylphenol (4-OP) has been studied in animals such as mouse and fish. In humans, the exposure of sperm to 4-OP has been shown to decrease motility and viability. In this study, we performed an in vitro assessment of the toxic effects of 4-OP on mouse TM4 Sertoli cells and investigated the underlying molecular mechanisms. TM4 cells were treated with four concentrations (0, 10, 30, and 50 µM) of 4-OP at the following time points: 24, 48, and 72 h. Cell viability and apoptosis assays were conducted following 4-OP exposure. We found that 4-OP significantly decreased cell viability in a concentration- and time-dependent manner, and increased apoptosis. Quantitative PCR analysis showed that the mRNA expression levels of BCL2 Associated X, Apoptosis Regulator (Bax) and BCL2 Antagonist/Killer (Bak) increased while that of BCL2 Apoptosis Regulator (Bcl-2) decreased in 4-OP-exposed cells compared with that in the controls. Western blotting revealed that 4-OP induced caspase-3 activity and Bad phosphorylation in a concentration- and time-dependent manner. Additionally, cytochrome C protein did not colocalize with mitochondrial marker dye by 24 h. Cytochrome c protein expression increased in a time-dependent manner upon exposure to 50 µM 4-OP. These results suggest that 4-OP induces mitochondria-mediated apoptosis through regulation of Bcl-2 family proteins and caspase-3 activation in male Sertoli cells.


Assuntos
Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fenóis/toxicidade , Células de Sertoli/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/patologia
14.
Angew Chem Int Ed Engl ; 58(43): 15526-15531, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31478324

RESUMO

Photothermal therapy at the NIR-II biowindow (1000-1350 nm) is drawing increasing interest because of its large penetration depth and maximum permissible exposure. Now, the supramolecular radical dimer, fabricated by N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole radical cation (MPT.+ ) and cucurbit[8]uril (CB[8]), achieves strong absorption at NIR-II biowindow. The supramolecular radical dimer (2MPT.+ -CB[8]) showed highly efficient photothermal conversion and improved stability, thus contributing to the strong inhibition on HegG2 cancer cell under 1064 nm irradiation even penetrating through chicken breast tissue. This work provides a novel approach to construct NIR-II chromophore by tailor-made assembly of organic radicals. It is anticipated that this study provides a new strategy to achieve NIR-II photothermal therapy and holds promises in luminescence materials, optoelectronic materials, and also biosensing.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Radicais Livres/química , Imidazóis/química , Raios Infravermelhos , Substâncias Macromoleculares/química , Tiazóis/química , Adsorção , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cristalografia por Raios X , Dimerização , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Substâncias Macromoleculares/farmacologia , Microscopia Confocal , Conformação Molecular , Teoria Quântica
15.
J Am Chem Soc ; 140(4): 1557-1565, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29309165

RESUMO

Water oxidation is the key step in both natural and artificial photosynthesis to capture solar energy for fuel production. The design of highly efficient and stable molecular catalysts for water oxidation based on nonprecious metals is still a great challenge. In this article, the electrocatalytic oxidation of water by Na[(L4-)CoIII], where L is a substituted tetraamido macrocyclic ligand, was investigated in aqueous solution (pH 7.0). We found that Na[(L4-)CoIII] is a stable and efficient homogeneous catalyst for electrocatalytic water oxidation with 380 mV onset overpotential in 0.1 M phosphate buffer (pH 7.0). Both ligand- and metal-centered redox features are involved in the catalytic cycle. In this cycle, Na[(L4-)CoIII] was first oxidized to [(L2-)CoIIIOH] via a ligand-centered proton-coupled electron transfer process in the presence of water. After further losing an electron and a proton, the resting state, [(L2-)CoIIIOH], was converted to [(L2-)CoIV═O]. Density functional theory (DFT) calculations at the B3LYP-D3(BJ)/6-311++G(2df,2p)//B3LYP/6-31+G(d,p) level of theory confirmed the proposed catalytic cycle. According to both experimental and DFT results, phosphate-assisted water nucleophilic attack to [(L2-)CoIV═O] played a key role in O-O bond formation.

16.
Inorg Chem ; 57(17): 10481-10484, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30102030

RESUMO

An unsymmetrical di-copper complex, ([Cu2(TPMAN)(µ-OH)(H2O)]3+, was prepared and used for electrocatalytic water oxidation in neutral conditions. This complex is a stable and efficient homogeneous catalyst during the electrocatalytic oxygen evolution process ( kcat = 0.78 s-1) with 780 mV onset overpotential in 0.1 M phosphate buffer (pH 7.0). The water oxidation mechanism of the unsymmetrical catalyst [Cu2(TPMAN)(µ-OH)]3+ exhibits different behaviors than that of [Cu2(BPMAN)(µ-OH)]3+, such as two redox steps with different pH dependences, a significant kinetic isotope effect, and buffer concentration dependence. All these changes were ascribed to the open site on the Cu center that is formed by removal of the hemilabile pyridyl site, which acts as an intramolecular proton acceptor to assist the O-O bond formation step.

17.
Angew Chem Int Ed Engl ; 55(42): 13132-13136, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27633314

RESUMO

The reactivity, and even reaction pathway, of excited states can be tuned by proton-coupled electron transfer (PCET). The triplet state of benzophenone functionalized with a Brønsted acid (3 *BP-COOH) showed a more powerful oxidation capability over the simple triplet state of benzophenone (3 *BP). 3 *BP-COOH could remove an electron from benzene at the rate of 8.0×105 m-1 s-1 , in contrast to the reactivity of 3 *BP which was inactive towards benzene oxidation. The origin of this great enhancement on the ability of the excited states to remove electrons from substrates is attributed to the intramolecular Brønsted acid, which enables the reductive quenching of 3 *BP by concerted electron-proton transfer.

18.
Chemistry ; 21(42): 14723-7, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26332702

RESUMO

A visible-light-mediated, organic photocatalytic stereoselective radical cascade cyclization of polyprenoids is described. The desired cascade cyclization products are achieved in good yields and high stereoselectivities with eosin Y as photocatalyst in hexafluoro-2-propanol. The catalyst system is also suitable for 1,3-dicarbonyl compounds, which require only catalytic amounts of LiBr to promote the formation of the corresponding enols.

19.
Angew Chem Int Ed Engl ; 54(16): 4870-5, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25728521

RESUMO

Water oxidation is the key step in natural and artificial photosynthesis for solar-energy conversion. As this process is thermodynamically unfavorable and is challenging from a kinetic point of view, the development of highly efficient catalysts with low energy cost is a subject of fundamental significance. Herein, we report on iron-based films as highly efficient water-oxidation catalysts. The films can be quickly deposited onto electrodes from Fe(II) ions in acetate buffer at pH 7.0 by simple cyclic voltammetry. The extremely low iron loading on the electrodes is critical for improved atom efficiency for catalysis. Our results showed that this film could catalyze water oxidation in neutral phosphate solution with a turnover frequency (TOF) of 756 h(-1) at an applied overpotential of 530 mV. The significance of this approach includes the use of earth-abundant iron, the fast and simple method for catalyst preparation, the low catalyst loading, and the large TOF for O2 evolution in neutral aqueous media.

20.
Angew Chem Int Ed Engl ; 54(16): 4909-14, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25678035

RESUMO

Electrocatalytic water oxidation using the oxidatively robust 2,7-[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine ligand (BPMAN)-based dinuclear copper(II) complex, [Cu2(BPMAN)(µ-OH)](3+), has been investigated. This catalyst exhibits high reactivity and stability towards water oxidation in neutral aqueous solutions. DFT calculations suggest that the O-O bond formation takes place by an intramolecular direct coupling mechanism rather than by a nucleophilic attack of water on the high-oxidation-state Cu(IV)=O moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA