Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Eur Radiol ; 33(5): 3133-3143, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892649

RESUMO

OBJECTIVES: We conducted a systematic and comprehensive bibliometric analysis of COVID-19-related medical imaging to determine the current status and indicate possible future directions. METHODS: This research provides an analysis of Web of Science Core Collection (WoSCC) indexed articles on COVID-19 and medical imaging published between 1 January 2020 and 30 June 2022, using the search terms "COVID-19" and medical imaging terms (such as "X-ray" or "CT"). Publications based solely on COVID-19 themes or medical image themes were excluded. CiteSpace was used to identify the predominant topics and generate a visual map of countries, institutions, authors, and keyword networks. RESULTS: The search included 4444 publications. The journal with the most publications was European Radiology, and the most co-cited journal was Radiology. China was the most frequently cited country in terms of co-authorship, with the Huazhong University of Science and Technology being the institution contributing with the highest number of relevant co-authorships. Research trends and leading topics included: assessment of initial COVID-19-related clinical imaging features, differential diagnosis using artificial intelligence (AI) technology and model interpretability, diagnosis systems construction, COVID-19 vaccination, complications, and predicting prognosis. CONCLUSIONS: This bibliometric analysis of COVID-19-related medical imaging helps clarify the current research situation and developmental trends. Subsequent trends in COVID-19 imaging are likely to shift from lung structure to function, from lung tissue to other related organs, and from COVID-19 to the impact of COVID-19 on the diagnosis and treatment of other diseases. Key Points • We conducted a systematic and comprehensive bibliometric analysis of COVID-19-related medical imaging from 1 January 2020 to 30 June 2022. • Research trends and leading topics included assessment of initial COVID-19-related clinical imaging features, differential diagnosis using AI technology and model interpretability, diagnosis systems construction, COVID-19 vaccination, complications, and predicting prognosis. • Future trends in COVID-19-related imaging are likely to involve a shift from lung structure to function, from lung tissue to other related organs, and from COVID-19 to the impact of COVID-19 on the diagnosis and treatment of other diseases.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Vacinas contra COVID-19 , Bibliometria , Diagnóstico por Imagem
2.
J Immunol ; 206(12): 2852-2861, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049972

RESUMO

NF-κB plays a crucial role in regulating cell proliferation, inflammation, apoptosis, and immune responses. HSV type 2 (HSV-2) is one of the most predominant sexually transmitted pathogens worldwide, and its infection increases the risk of HIV type 1 (HIV-1) acquisition and transmission. HSV-2 glycoprotein D (gD), highly homologous to HSV-1 gD, is essential for viral adhesion, fusion, entry, and spread. It is known that HSV-1 gD can bind herpesvirus entry mediator (HVEM) to trigger NF-κB activation and thereby facilitate viral replication at the early stage of infection. In this study, we found that purified HSV-2 gD triggered NF-κB activation at the early stage of infection, whereas ectopic expression of HSV-2 gD significantly downregulated TNF-α-induced NF-κB activity as well as TNF-α-induced IL-6 and IL-8 expression. Mechanistically, HSV-2 gD inhibited NF-κB, but not IFN-regulatory factor 3 (IRF3), activation and suppressed NF-κB activation mediated by overexpression of TNFR-associated factor 2 (TRAF2), IκB kinase α (IKKα), IKKß, or p65. Coimmunoprecipitation and binding kinetic analyses demonstrated that HSV-2 gD directly bound to the NF-κB subunit p65 and abolished the nuclear translocation of p65 upon TNF-α stimulation. Mutational analyses further revealed that HSV-2 gD interacted with the region spanning aa 19-187 of p65. Findings in this study together demonstrate that HSV-2 gD interacts with p65 to regulate p65 subcellular localization and thereby prevents NF-κB-dependent gene expression, which may contribute to HSV-2 immune evasion and pathogenesis.


Assuntos
Herpesvirus Humano 2/imunologia , Fator de Transcrição RelA/imunologia , Proteínas do Envelope Viral/imunologia , Células HEK293 , Células HeLa , Humanos
3.
BMC Med Imaging ; 23(1): 181, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950171

RESUMO

BACKGROUND: The value of radiomics features from the adrenal gland and periadrenal fat CT images for predicting disease progression in patients with COVID-19 has not been studied extensively. We assess the value of radiomics features from the adrenal gland and periadrenal fat CT images in predicting COVID-19 disease exacerbation. METHODS: A total of 1,245 patients (685 moderate and 560 severe patients) were enrolled in a retrospective study. We proposed a 3D V-net to segment adrenal glands in onset CT images automatically, and periadrenal fat was obtained using inflation operation around the adrenal gland. Next, we built a clinical model (CM), three radiomics models (adrenal gland model [AM], periadrenal fat model [PM], and fusion of adrenal gland and periadrenal fat model [FM]), and radiomics nomogram (RN) after radiomics features extracted. RESULTS: The auto-segmentation framework yielded a dice value 0.79 in the training set. CM, AM, PM, FM, and RN obtained AUCs of 0.717, 0.716, 0.736, 0.760, and 0.833 in the validation set. FM and RN had better predictive efficacy than CM (P < 0.0001) in the training set. RN showed that there was no significant difference in the validation set (mean absolute error [MAE] = 0.04) and test set (MAE = 0.075) between predictive and actual results. Decision curve analysis showed that if the threshold probability was between 0.4 and 0.8 in the validation set or between 0.3 and 0.7 in the test set, it could gain more net benefits using RN than FM and CM. CONCLUSIONS: Radiomics features extracted from the adrenal gland and periadrenal fat CT images are related to disease exacerbation in patients with COVID-19.


Assuntos
COVID-19 , Humanos , Estudos Retrospectivos , COVID-19/diagnóstico por imagem , Glândulas Suprarrenais/diagnóstico por imagem , Progressão da Doença , Atenção à Saúde , Tomografia Computadorizada por Raios X
4.
J Immunol ; 205(5): 1281-1292, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699158

RESUMO

Type I IFNs play an important role in innate immunity against viral infections by inducing the expression of IFN-stimulated genes (ISGs), which encode effectors with various antiviral functions. We and others previously reported that HSV type 2 (HSV-2) inhibits the synthesis of type I IFNs, but how HSV-2 suppresses IFN-mediated signaling is less understood. In the current study, after the demonstration of HSV-2 replication resistance to IFN-ß treatment in human epithelial cells, we reveal that HSV-2 and the viral protein ICP22 significantly decrease the expression of ISG54 at both mRNA and protein levels. Likewise, us1 del HSV-2 (ICP22-deficient HSV-2) replication is more sensitive to IFN-ß treatment, indicating that ICP22 is a vital viral protein responsible for the inhibition of type I IFN-mediated signaling. In addition, overexpression of HSV-2 ICP22 inhibits the expression of STAT1, STAT2, and IFN regulatory factor 9 (IRF9), resulting in the blockade of ISG factor 3 (ISGF3) nuclear translocation, and mechanistically, this is due to ICP22-induced ubiquitination of STAT1, STAT2, and IRF9. HSV-2 ICP22 appears to interact with STAT1, STAT2, IRF9, and several other ubiquitinated proteins. Following further biochemical study, we show that HSV-2 ICP22 functions as an E3 ubiquitin protein ligase to induce the formation of polyubiquitin chains. Taken together, we demonstrate that HSV-2 interferes with type I IFN-mediated signaling by degrading the proteins of ISGF3, and we identify HSV-2 ICP22 as a novel E3 ubiquitin protein ligase to induce the degradation of ISGF3. Findings in this study highlight a new mechanism by which HSV-2 circumvents the host antiviral responses through a viral E3 ubiquitin protein ligase.


Assuntos
Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Proteínas Imediatamente Precoces/imunologia , Interferon beta/imunologia , Transdução de Sinais/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas Virais/imunologia , Antivirais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/imunologia , Humanos , Imunidade Inata/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/imunologia , Ubiquitinação/imunologia
5.
Appl Intell (Dordr) ; 51(5): 2838-2849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764567

RESUMO

The novel coronavirus (COVID-19) pneumonia has become a serious health challenge in countries worldwide. Many radiological findings have shown that X-ray and CT imaging scans are an effective solution to assess disease severity during the early stage of COVID-19. Many artificial intelligence (AI)-assisted diagnosis works have rapidly been proposed to focus on solving this classification problem and determine whether a patient is infected with COVID-19. Most of these works have designed networks and applied a single CT image to perform classification; however, this approach ignores prior information such as the patient's clinical symptoms. Second, making a more specific diagnosis of clinical severity, such as slight or severe, is worthy of attention and is conducive to determining better follow-up treatments. In this paper, we propose a deep learning (DL) based dual-tasks network, named FaNet, that can perform rapid both diagnosis and severity assessments for COVID-19 based on the combination of 3D CT imaging and clinical symptoms. Generally, 3D CT image sequences provide more spatial information than do single CT images. In addition, the clinical symptoms can be considered as prior information to improve the assessment accuracy; these symptoms are typically quickly and easily accessible to radiologists. Therefore, we designed a network that considers both CT image information and existing clinical symptom information and conducted experiments on 416 patient data, including 207 normal chest CT cases and 209 COVID-19 confirmed ones. The experimental results demonstrate the effectiveness of the additional symptom prior information as well as the network architecture designing. The proposed FaNet achieved an accuracy of 98.28% on diagnosis assessment and 94.83% on severity assessment for test datasets. In the future, we will collect more covid-CT patient data and seek further improvement.

6.
J Immunol ; 201(1): 53-68, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760190

RESUMO

Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention.


Assuntos
Quimiocina CCL5/biossíntese , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Encefalite Transmitida por Carrapatos/patologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Regiões Promotoras Genéticas/genética , Receptores Imunológicos , Células Vero , Proteínas não Estruturais Virais/genética
7.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1305-1313, 2019 Apr.
Artigo em Zh | MEDLINE | ID: mdl-31090285

RESUMO

As an important signal molecule, extracellular ATP(eATP) can regulate many physiological and biochemical responses to plant stress. In this study, the regulation of extracellular ATP(eATP) on chlorophyll content and chlorophyll fluorescence parameters of Angelica sinensis seedlings were studied under drought and low temperature stress. The results showed that all the chlorophyll content, the actual photochemical efficiency [Y(Ⅱ)], the electron transfer rate(ETR), the photochemical quenching coefficient(qP and qL) of A. sinensis leaves were significantly decreased under drought and low temperature stress, respectively. At the same time, non-photochemical quenching(NPQ and qN) were also all significantly increased, respectively. The application of eATP alleviated the decrease of chlorophyll content, Y(Ⅱ), ETR, qP and qL of A. sinensis leaves under drought and low temperature stress, and eliminated the increase of qN and NPQ. The results indicated that eATP could effectively increase the open ratio of PSⅡ reaction centers, and improve the electron transfer rate and light energy conversion efficiency of PSⅡ of A. sinensis leaves under drought and low temperature stress. It is beneficial to enhance the chlorophyll synthesis and the adaptability of PSⅡ about A. sinensis seedlings to drought and low temperature stress.


Assuntos
Trifosfato de Adenosina/farmacologia , Angelica sinensis/química , Clorofila/análise , Temperatura Baixa , Secas , Estresse Fisiológico , Angelica sinensis/fisiologia , Fluorescência , Fotossíntese , Folhas de Planta/química , Plântula/química , Plântula/fisiologia , Água
8.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3115-3126, 2018 Aug.
Artigo em Zh | MEDLINE | ID: mdl-30200706

RESUMO

In this study we investigate the effects of cadmium stress on Astragalus membranaceus seedlings and the alleviative effects of attapulgite clay in growth substrate on cadmium stress to A. membranaceus seedlings. The results showed that the Y (Ⅱ) (effective photochemical quantum yield of PSⅡ photosynthetic), qP(photochemical quenching coefficient), ETR(the rate of non-cyclic electrontransport through PSⅡ), and chlorophyll content of the leaves were significantly decreased with the increase of cadmium concentrations, while the cadmium content, non-photochemical quenching(NPQ, qN) of the leaves and cadmium content, MDA content, plasma membrane permeability, and the damage degree of root apical membrane of the roots were significantly increased. Simultaneously, the activities of APX(ascorbate peroxidase), SOD(superoxide dismutase), POD(peroxidase), CAT(catalase), soluble protein content, and soluble sugar content of roots were increased first but then decreased with the increasing cadmium concentration. Under the condition of without Cd stress, the attapulgite clay into the growth substrate did not significantly affect above physiological indexes of leaves, but significantly increased SOD activity and soluble sugar content of roots and decreased the MDA content, damage degree of root apical membrane of roots, while other physiological indexes did not significantly change. Under cadmium stress, the presence of attapulgite clay in the growth substrate significantly alleviated the cadmium-induced decreases Y (Ⅱ), qP, ETR and chlorophyll content of leaves, and the CAT activity, soluble protein content, and soluble sugar content of roots. Under condition with cadmium stress, the presence of attapulgite clay significantly alleviated the cadmium-induced increases of leaves cadmium content, qN and NPQ, and the cadmium content, MDA content, plasma membrane permeability, damage degree of root apical membrane, SOD, POD, and APX activity of the roots. And, the alleviative effects of attapulgite clay on cadmium stress to A. membranaceus roots were more obvious with the increase of cadmium stress time. The above results showed that the addition of attapulgite clay into the growth substrate has certain alleviative effect on the cadmium stress to A. membranaceus seedlings.


Assuntos
Astragalus propinquus/efeitos dos fármacos , Cádmio/efeitos adversos , Argila , Compostos de Magnésio , Plântula/efeitos dos fármacos , Compostos de Silício , Ascorbato Peroxidases/metabolismo , Astragalus propinquus/fisiologia , Catalase/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Raízes de Plantas , Plântula/fisiologia , Estresse Fisiológico , Superóxido Dismutase/metabolismo
9.
J Gen Virol ; 98(9): 2351-2361, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28809154

RESUMO

Herpes simplex virus type 2 (HSV-2) increases human immunodeficiency virus type 1 (HIV-1) acquisition and transmission via unclear mechanisms. Herpesvirus entry mediator (HVEM), an HSV-2 entry receptor, is highly expressed on HIV-1 target cells (CD4+ T cells) and may be incorporated into HIV-1 virions, while HSV-2 glycoproteins can be present on the infected cell surface. Since HVEM-gD interaction together with gB/gH/gL is essential for HSV-2 entry, HVEM-bearing HIV-1 (HIV-1/HVEM) may enter HSV-2-infected cells through such interactions. To test this hypothesis, we first confirmed the presence of HVEM on HIV-1 virions and glycoproteins on the HSV-2-infected cell surface. Additional studies showed that HIV-1/HVEM bound to the HSV-2-infected cell surface in an HSV-2 infection-time-dependent manner via HVEM-gD interaction. HIV-1/HVEM entry of HSV-2-infected cells was dependent on HVEM-gD interaction and the presence of gB/gH/gL, and was inhibited by azidothymidine. Furthermore, peripheral blood mononuclear cell-derived HIV-1 infected HSV-2-infected primary foreskin epithelial cells and the infection was inhibited by anti-HVEM/gD antibodies. Together, our results indicate that HIV-1 produced from CD4+ T cells bears HSV-2 receptor HVEM and can bind to and enter HSV-2-infected epithelial cells depending on HVEM-gD interaction and the presence of gB/gH/gL. Our findings provide a potential new mechanism underlying HSV-2 infection-enhanced HIV-1 mucosal transmission and may shed light on HIV-1 prevention.


Assuntos
Células Epiteliais/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Herpes Simples/metabolismo , Herpesvirus Humano 2/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Linfócitos T CD4-Positivos/virologia , Células CHO , Cricetulus , Células Epiteliais/virologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Herpes Simples/genética , Herpesvirus Humano 2/genética , Humanos , Camundongos , Ligação Proteica , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Receptores Virais/genética , Proteínas do Envelope Viral/genética , Internalização do Vírus
10.
J Immunol ; 195(1): 329-38, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25994965

RESUMO

There is a lack of an HSV-2 vaccine, in part as the result of various factors that limit robust and long-term memory immune responses at the mucosal portals of viral entry. We previously demonstrated that chemokine CCL19 augmented mucosal and systemic immune responses to HIV-1 envelope glycoprotein. Whether such enhanced immunity can protect animals against virus infection remains to be addressed. We hypothesized that using CCL19 in a fusion form to direct an immunogen to responsive immunocytes might have an advantage over CCL19 being used in combination with an immunogen. We designed two fusion constructs, plasmid (p)gBIZCCL19 and pCCL19IZgB, by fusing CCL19 to the C- or N-terminal end of the extracellular HSV-2 glycoprotein B (gB) with a linker containing two (Gly4Ser)2 repeats and a GCN4-based isoleucine zipper motif for self-oligomerization. Following immunization in mice, pgBIZCCL19 and pCCL19IZgB induced strong gB-specific IgG and IgA in sera and vaginal fluids. The enhanced systemic and mucosal Abs showed increased neutralizing activity against HSV-2 in vitro. Measurement of gB-specific cytokines demonstrated that gB-CCL19 fusion constructs induced balanced Th1 and Th2 cellular immune responses. Moreover, mice vaccinated with fusion constructs were well protected from intravaginal lethal challenge with HSV-2. Compared with pgB and pCCL19 coimmunization, fusion constructs increased mucosal surface IgA(+) cells, as well as CCL19-responsive immunocytes in spleen and mesenteric lymph nodes. Our findings indicate that enhanced humoral and cellular immune responses can be achieved by immunization with an immunogen fused to a chemokine, providing information for the design of vaccines against mucosal infection by HSV-2 and other sexually transmitted viruses.


Assuntos
Quimiocina CCL19/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Motivos de Aminoácidos , Animais , Quimiocina CCL19/administração & dosagem , Quimiocina CCL19/genética , Feminino , Herpes Genital/imunologia , Herpes Genital/mortalidade , Herpes Genital/patologia , Herpesvirus Humano 2/química , Imunidade Celular/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Imunização , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Equilíbrio Th1-Th2 , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vagina/imunologia , Vagina/patologia , Vagina/virologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
J Immunol ; 194(7): 3102-15, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25712217

RESUMO

HSV-2 is the major cause of genital herpes, and its infection increases the risk of HIV-1 acquisition and transmission. After initial infection, HSV-2 can establish latency within the nervous system and thus maintains lifelong infection in humans. It has been suggested that HSV-2 can inhibit type I IFN signaling, but the underlying mechanism has yet to be determined. In this study, we demonstrate that productive HSV-2 infection suppresses Sendai virus (SeV) or polyinosinic-polycytidylic acid-induced IFN-ß production. We further reveal that US1, an immediate-early protein of HSV-2, contributes to such suppression, showing that US1 inhibits IFN-ß promoter activity and IFN-ß production at both mRNA and protein levels, whereas US1 knockout significantly impairs such capability in the context of HSV-2 infection. US1 directly interacts with DNA binding domain of IRF-3, and such interaction suppresses the association of nuclear IRF-3 with the IRF-3 responsive domain of IFN-ß promoter, resulting in the suppression of IFN-ß promoter activation. Additional studies demonstrate that the 217-414 aa domain of US1 is critical for the suppression of IFN-ß production. Our results indicate that HSV-2 US1 downmodulates IFN-ß production by suppressing the association of IRF-3 with the IRF-3 responsive domain of IFN-ß promoter. Our findings highlight the significance of HSV-2 US1 in inhibiting IFN-ß production and provide insights into the molecular mechanism by which HSV-2 evades the host innate immunity, representing an unconventional strategy exploited by a dsDNA virus to interrupt type I IFN signaling pathway.


Assuntos
Regulação da Expressão Gênica , Herpesvirus Humano 2/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Interferon beta/genética , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Humanos , Proteínas Imediatamente Precoces/genética , Fator Regulador 3 de Interferon/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
13.
Virol J ; 13(1): 154, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630089

RESUMO

BACKGROUND: HSV-2 is the major cause of genital herpes. We previously demonstrated that the host viral restriction factor tetherin restricts HSV-2 release and is antagonized by several HSV-2 glycoproteins. However, the mechanisms underlying HSV-2 glycoproteins mediated counteraction of tetherin remain unclear. In this study, we investigated whether tetherin restricts the cell-to-cell spread of HSV-2 and the mechanisms underlying HSV-2 gD mediated antagonism of tetherin. METHODS: Infectious center assays were used to test whether tetherin could affect cell-to-cell spread of HSV-2. Coimmunoprecipitation assays were performed to map the tetherin domains required for HSV-2 gD-mediated downregulation. Immunoflurence assays were performed to detect the accumulation of tetherin in lysosomes or proteasomes. All experiments were repeated for at least three times and the data were performed statistical analysis. RESULTS: 1) Tetherin restricts cell-to-cell spread of HSV-2; 2) HSV-2 gD specifically interacts with the CC domain of tetherin; 3) HSV-2 gD promotes tetherin to the lysosomal degradation pathway. CONCLUSIONS: Tetherin not only restricts HSV-2 release but also its cell-to-cell spread. In turn, HSV-2 gD targets the CC domain of tetherin and promotes its degradation in the lysosome. Findings in this study have increased our understanding of tetherin restriction and viral countermeasures.


Assuntos
Antígenos CD/metabolismo , Herpesvirus Humano 2/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Linhagem Celular , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Proteínas Ligadas por GPI/metabolismo , Herpesvirus Humano 2/imunologia , Humanos , Evasão da Resposta Imune , Imunoprecipitação , Microscopia de Fluorescência , Ligação Proteica , Proteólise
14.
J Immunol ; 188(12): 6247-57, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22586042

RESUMO

Recruitment of CD4(+) T cells to infection areas after HSV-2 infection may be one of the mechanisms that account for increased HIV-1 sexual transmission. Lymphocytes recruited by chemokine CXCL9 are known to be important in control of HSV-2 infection in mice, although the underlying mechanism remains to be addressed. Based on our observation that CXCL9 expression is augmented in the cervical mucus of HSV-2-positive women, in this study we demonstrate that HSV-2 infection directly induces CXCL9 expression in primary cervical epithelial cells and cell lines, the principal targets of HSV-2, at both mRNA and protein levels. Further studies reveal that the induction of CXCL9 expression by HSV-2 is dependent upon a binding site for C/EBP-ß within CXCL9 promoter sequence. Furthermore, CXCL9 expression is promoted at the transcriptional level through phosphorylating C/EBP-ß via p38 MAPK pathway, leading to binding of C/EBP-ß to the CXCL9 promoter. Chemotaxis assays indicate that upregulation of CXCL9 expression at the protein level by HSV-2 infection enhances the migration of PBLs and CD4(+) T cells, whereas neutralization of CXCL9 or inhibition of p38-C/EBP-ß pathway can significantly decrease the migration. Our data together demonstrate that HSV-2 induces CXCL9 expression in human cervical epithelial cells by activation of p38-C/EBP-ß pathway through promoting the binding of C/EBP-ß to CXCL9 promoter, which may recruit activated CD4(+) T cells to mucosal HSV-2 infection sites and potentially increase the risk of HIV-1 sexual transmission.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Quimiocina CXCL9/biossíntese , Células Epiteliais/virologia , Herpes Simples/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Adulto , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo do Útero/virologia , Quimiocina CXCL9/genética , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Adulto Jovem
15.
Comput Biol Med ; 169: 107866, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134751

RESUMO

Gastric cancer is a significant contributor to cancer-related fatalities globally. The automated segmentation of gastric tumors has the potential to analyze the medical condition of patients and enhance the likelihood of surgical treatment success. However, the development of an automatic solution is challenged by the heterogeneous intensity distribution of gastric tumors in computed tomography (CT) images, the low-intensity contrast between organs, and the high variability in the stomach shapes and gastric tumors in different patients. To address these challenges, we propose a self-attention backward network (SaB-Net) for gastric tumor segmentation (GTS) in CT images by introducing a self-attention backward layer (SaB-Layer) to feed the self-attention information learned at the deep layer back to the shallow layers. The SaB-Layer efficiently extracts tumor information from CT images and integrates the information into the network, thereby enhancing the network's tumor segmentation ability. We employed datasets from two centers, one for model training and testing and the other for external validation. The model achieved dice scores of 0.8456 on the test set and 0.8068 on the external verification set. Moreover, we validated the model's transfer learning ability on a publicly available liver cancer dataset, achieving results comparable to state-of-the-art liver cancer segmentation models recently developed. SaB-Net has strong potential for assisting in the clinical diagnosis of and therapy for gastric cancer. Our implementation is available at https://github.com/TyrionJ/SaB-Net.


Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Aprendizagem , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador
16.
Neurosci Lett ; : 137890, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38971300

RESUMO

Spinal cord injury (SCI) remains a worldwide challenge due to limited treatment strategies. Repetitive trans-spinal magnetic stimulation (rTSMS) is among the most cutting-edge treatments for SCI. However, the mechanism underlying rTSMS on functional recovery is still unclear. In this study, 8-week-old C57BL/6J female mice were used to design SCI models followed by treatment with monotherapy (1 Hz rTSMS or LY364947) or combination therapy (rTSMS + LY364947). Our results showed obvious functional recovery after monotherapies compared to untreated mice. Immunofluorescence results demonstrated that rTSMS and LY364947 modulate the lesion scar by decreasing fibrosis and GFAP and possess the effect on neural protection. In addition, rTSMS suppressed inflammation and the activation of TGFß1/Smad2/3 signaling pathway, as evidenced by markedly reduced TGF-ßRⅠ, Smad2/3, and p-Smad2/3 compared with untreated mice. Overall, it was confirmed that 1 Hz rTSMS promotes SCI recovery by suppressing the TGFß1/Smad2/3 signaling, revealing a novel pathological mechanism of 1 Hz rTSMS intervention, and may provide potential targets for clinical treatment.

17.
Cell Death Discov ; 9(1): 210, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391444

RESUMO

Inflammatory bowel diseases (IBDs), including ulcerative colitis, and Crohn's disease, are intestinal disorders characterized by chronic relapsing inflammation. A large proportion of patients with IBD will progress to develop colitis-associated colorectal cancer due to the chronic intestinal inflammation. Biologic agents that target tumour necrosis factor-α, integrin α4ß7, and interleukin (IL)12/23p40 have been more successful than conventional therapies in treating IBD. However, drug intolerance and loss of response are serious drawbacks of current biologics, necessitating the development of novel drugs that target specific pathways in IBD pathogenesis. One promising group of candidate molecules are bone morphogenetic proteins (BMPs), members of the TGF-ß family involved in regulating morphogenesis, homeostasis, stemness, and inflammatory responses in the gastrointestinal tract. Also worth examining are BMP antagonists, major regulators of these proteins. Evidence has shown that BMPs (especially BMP4/6/7) and BMP antagonists (especially Gremlin1 and follistatin-like protein 1) play essential roles in IBD pathogenesis. In this review, we provide an updated overview on the involvement of BMPs and BMP antagonists in IBD pathogenesis and in regulating the fate of intestinal stem cells. We also described the expression patterns of BMPs and BMP antagonists along the intestinal crypt-villus axis. Lastly, we synthesized available research on negative regulators of BMP signalling. This review summarizes recent developments on BMPs and BMP antagonists in IBD pathogenesis, which provides novel insights into future therapeutic strategies.

18.
Cell Death Discov ; 9(1): 24, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690621

RESUMO

Rat sarcoma virus homolog (Rho) guanosine triphosphatases (GTPases) function as "molecular switch" in cellular signaling regulation processes and are associated with the pathogenesis of inflammatory bowel disease (IBD). This chronic intestinal tract inflammation primarily encompasses two diseases: Crohn's disease and ulcerative colitis. The pathogenesis of IBD is complex and considered to include four main factors and their interactions: genetics, intestinal microbiota, immune system, and environment. Recently, several novel pathogenic components have been identified. In addition, potential therapies for IBD targeting Rho GTPases have emerged and proven to be clinically effective. This review mainly focuses on Rho GTPases and their possible mechanisms in IBD pathogenesis. The therapeutic possibility of Rho GTPases is also discussed.

19.
J Inflamm Res ; 16: 1879-1894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152865

RESUMO

Background: Treatment failures (TFs) generally exist in the course of ulcerative colitis (UC), while early reliable predictors of TFs are still lacking. We aimed to generate nomograms for the prediction of TFs. Methods: In this retrospective case-control study, the endpoint was the occurrence of TFs, which included medically associated treatment failures and surgery-associated treatment failures (colectomy). Clinical features and mucus integrity evident by goblet cells (GCs) number, expression levels of MUC2 and SLC26A3 were enrolled in the univariate analysis. Nomogram performance was evaluated by discrimination and calibration. Results: We identified 256 UC patients at our center from January 2010 to June 2022. Fourteen variables for TFs and 9 for colectomy were identified by univariate analysis. Five baseline indices were incorporated into the nomogram for the prediction of TFs: area of GCs, age at diagnosis, disease duration, hemoglobin, and Mayo score. The model was presented with decent discrimination (C index of 0.822) and well calibration. In addition, the colectomy predictive nomogram was built using MUC2 intensity, age at onset, and Mayo score with a good discrimination (C index of 0.92). Conclusion: Nomograms based on comprehensive factors including mucus barrier function were developed to predict TFs in UC patients with great discrimination, which may serve as practical tools aiming to identify high-risk subgroups warrant timely intervention.

20.
Gut Microbes ; 15(1): 2211501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37203220

RESUMO

Magnitude and diversity of gut microbiota and metabolic systems are critical in shaping human health and diseases, but it remains largely unclear how complex metabolites may selectively regulate gut microbiota and determine health and diseases. Here, we show that failures or compromised effects of anti-TNF-α therapy in inflammatory bowel diseases (IBD) patients were correlated with intestinal dysbacteriosis with more pro-inflammatory bacteria, extensive unresolved inflammation, failed mucosal repairment, and aberrant lipid metabolism, particularly lower levels of palmitoleic acid (POA). Dietary POA repaired gut mucosal barriers, reduced inflammatory cell infiltrations and expressions of TNF-α and IL-6, and improved efficacy of anti-TNF-α therapy in both acute and chronic IBD mouse models. Ex vivo treatment with POA in cultured inflamed colon tissues derived from Crohn's disease (CD) patients reduced pro-inflammatory signaling/cytokines and conferred appreciable tissue repairment. Mechanistically, POA significantly upregulated the transcriptional signatures of cell division and biosynthetic process of Akkermansia muciniphila, selectively increased the growth and abundance of Akkermansia muciniphila in gut microbiota, and further reprogrammed the composition and structures of gut microbiota. Oral transfer of such POA-reprogrammed, but not control, gut microbiota induced better protection against colitis in anti-TNF-α mAb-treated recipient mice, and co-administration of POA with Akkermansia muciniphila showed significant synergistic protections against colitis in mice. Collectively, this work not only reveals the critical importance of POA as a polyfunctional molecular force to shape the magnitude and diversity of gut microbiota and therefore promote the intestinal homeostasis, but also implicates a new potential therapeutic strategy against intestinal or abenteric inflammatory diseases.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Inibidores do Fator de Necrose Tumoral/metabolismo , Colite/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Verrucomicrobia/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Terapia Biológica , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA