Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Glia ; 62(10): 1687-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24909307

RESUMO

Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and ß3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.


Assuntos
Neoplasias Encefálicas/terapia , Carcinogênese/metabolismo , Glioblastoma/terapia , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/fisiopatologia , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Vetores Genéticos , Glioblastoma/fisiopatologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas Repressoras/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Temozolomida , Tubulina (Proteína)/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(39): 16434-9, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21903926

RESUMO

Telomere repeat-binding factor 2 (TRF2) is critical for telomere integrity in dividing stem and somatic cells, but its role in postmitotic neurons is unknown. Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor (REST), and disruption of this interaction induces neuronal differentiation. Here we report a developmental switch from the expression of TRF2 in proliferating neural progenitor cells to expression of a unique short nontelomeric isoform of TRF2 (TRF2-S) as neurons establish a fully differentiated state. Unlike nuclear TRF2, which enhances REST-mediated gene repression, TRF2-S is located in the cytoplasm where it sequesters REST, thereby maintaining the expression of neuronal genes, including those encoding glutamate receptors, cell adhesion, and neurofilament proteins. In neurons, TRF2-S-mediated antagonism of REST nuclear activity is greatly attenuated by either overexpression of TRF2 or administration of the excitatory amino acid kainic acid. Overexpression of TRF2-S rescues kainic acid-induced REST nuclear accumulation and its gene-silencing effects. Thus, TRF2-S acts as part of a unique developmentally regulated molecular switch that plays critical roles in the maintenance and plasticity of neurons.


Assuntos
Inativação Gênica , Neurônios/citologia , Proteínas Repressoras/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero , Fatores de Transcrição/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Ligação a Telômeros/genética
3.
Curr Biol ; 18(19): 1489-94, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18818083

RESUMO

Removal of TRF2, a telomere shelterin protein, recapitulates key aspects of telomere attrition including the DNA-damage response and cell-cycle arrest [1]. Distinct from the response of proliferating cells to loss of TRF2 [2, 3], in rodent noncycling cells, TRF2 inhibition promotes differentiation and growth [4, 5]. However, the mechanism that couples telomere gene-silencing features [6-8] to differentiation programs has yet to be elucidated. Here we describe an extratelomeric function of TRF2 in the regulation of neuronal genes mediated by the interaction of TRF2 with repressor element 1-silencing transcription factor (REST), a master repressor of gene networks devoted to neuronal functions [9-12]. TRF2-REST complexes are readily detected by coimmunoprecipitation assays and are localized to aggregated PML-nuclear bodies in undifferentiated pluripotent human NTera2 stem cells. Inhibition of TRF2, either by a dominant-negative mutant or by RNA interference, dissociates TRF2-REST complexes resulting in ubiquitin-proteasomal degradation of REST. Consequentially, REST-targeted neural genes (L1CAM, beta3-tubulin, synaptophysin, and others) are derepressed, resulting in acquisition of neuronal phenotypes. Notably, selective damage to telomeres without affecting TRF2 levels causes neither REST degradation nor cell differentiation. Thus, in addition to protecting telomeres, TRF2 possesses a novel role in stabilization of REST thereby controlling neural tumor and stem cell fate.


Assuntos
Diferenciação Celular , Inativação Gênica , Neurônios/citologia , Proteínas Repressoras/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo
4.
Nat Neurosci ; 22(5): 719-728, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936558

RESUMO

Neuritic plaques, a pathological hallmark in Alzheimer's disease (AD) brains, comprise extracellular aggregates of amyloid-beta (Aß) peptide and degenerating neurites that accumulate autolysosomes. We found that, in the brains of patients with AD and in AD mouse models, Aß plaque-associated Olig2- and NG2-expressing oligodendrocyte progenitor cells (OPCs), but not astrocytes, microglia, or oligodendrocytes, exhibit a senescence-like phenotype characterized by the upregulation of p21/CDKN1A, p16/INK4/CDKN2A proteins, and senescence-associated ß-galactosidase activity. Molecular interrogation of the Aß plaque environment revealed elevated levels of transcripts encoding proteins involved in OPC function, replicative senescence, and inflammation. Direct exposure of cultured OPCs to aggregating Aß triggered cell senescence. Senolytic treatment of AD mice selectively removed senescent cells from the plaque environment, reduced neuroinflammation, lessened Aß load, and ameliorated cognitive deficits. Our findings suggest a role for Aß-induced OPC cell senescence in neuroinflammation and cognitive deficits in AD, and a potential therapeutic benefit of senolytic treatments.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Senescência Celular , Dasatinibe/administração & dosagem , Células Precursoras de Oligodendrócitos/metabolismo , Quercetina/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/administração & dosagem , Animais , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Transgênicos , Placa Amiloide/ultraestrutura , Prosencéfalo/metabolismo , Prosencéfalo/ultraestrutura
5.
Methods Mol Biol ; 438: 185-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369758

RESUMO

The ends of chromosomes consist of a hexanucleotide DNA repeat sequence and specialized DNA-binding and telomere-associated proteins. An enzyme activity called telomerase maintains telomere length by using an RNA template (TR) and a reverse transcriptase (TERT) to add the hexanucleotide sequence to the free chromosome end. The structure of telomeres is maintained and modified by telomere repeat-binding factors (TRF1 and TRF2) and proteins known for their role in DNA damage responses, including poly(ADP-ribose) polymerase-1, Werner, and ATM. Telomerase activity can be quantified using a telomere repeat amplification protocol (TRAP) assay, and levels of TERT and telomere-associated proteins are evaluated by immunoblot and immunocytochemical methods. Levels of TERT and telomere-associated proteins can be overexpressed or knocked down using viral vector-based methods. Using the kinds of approaches described here, evidence has been obtained suggesting that telomeres play important roles in regulating neural stem cell proliferation, neuronal differentiation, senescence of glial cells, and apoptosis and DNA damage responses of neural cells.


Assuntos
Neurobiologia , Telômero/metabolismo , Animais , Regulação da Expressão Gênica , Immunoblotting , Camundongos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/genética , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
6.
Cell Cycle ; 15(22): 3026-3032, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27565210

RESUMO

Gene expression patterns change dramatically during neuronal development. Proliferating cells, including neural stem cells (NSCs), express telomere repeat-binding factor 2 (TRF2), a nuclear protein that associates with telomeric proteins, DNA, and RNA telomeres. In NSCs TRF2 also binds to the transcription regulator REST to facilitate repression of numerous neuron-specific genes, thereby keeping the NSCs in a self-renewing state. Upon neuronal differentiation, TRF2 levels decline, REST-regulated neuronal genes are derepressed, and a short isoform of TRF2 arises (TRF2-S) which localizes in the cytoplasm, associates with different subsets of proteins and transcripts, and mobilizes axonal G-rich mRNAs. We recently identified two RNA-binding proteins, HNRNPH1 and H2 (referred to jointly as HNRNPH due to their high homology), which mediate the alternative splicing of an exon required for the expression of full-length TRF2. As HNRNPH levels decline during neurogenesis, TRF2 abundance decreases and TRF2-S accumulates. Here, we discuss the shared and unique functions of TRF2 and TRF2-S, the distinct subcellular compartment in which each isoform resides, the subsets of proteins and nucleic acids with which each interacts, and the functional consequences of these ribonucleoprotein interactions. This paradigm illustrates the dynamic mechanisms through which splicing regulation by factors like HNRNPH enable distinct protein functions as cells adapt to developmental programs such as neurogenesis.


Assuntos
Neurogênese , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Processamento Alternativo/genética , Animais , Núcleo Celular/metabolismo , Humanos , Neurogênese/genética , Ligação Proteica , RNA/metabolismo
7.
Cell Rep ; 15(5): 926-934, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117401

RESUMO

During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation.


Assuntos
Processamento Alternativo/genética , Diferenciação Celular/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Neurônios/citologia , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Sequência de Bases , Éxons/genética , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Proteômica , RNA/metabolismo , Precursores de RNA/genética , Ratos , Proteína 2 de Ligação a Repetições Teloméricas/genética
8.
J Neurosci ; 22(2): 404-12, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11784785

RESUMO

Urocortin and urocortin II are members of the corticotropin-releasing hormone (CRH) family of neuropeptides that function to regulate stress responses. Two high-affinity G-protein-coupled receptors have been identified that bind CRH and/or urocortin I and II, designated CRHR1 and CRHR2, both of which are present in hippocampal regions of mammalian brain. The hippocampus plays an important role in regulating stress responses and is a brain region in which neurons are vulnerable during disease and stress conditions, including cerebral ischemia, Alzheimer's disease, and anxiety disorders. Here we report that urocortin exerts a potent protective action in cultured rat hippocampal neurons with concentrations in the range of 0.5-5.0 pm, increasing the resistance of the cells to oxidative (amyloid beta-peptide, 4-hydroxynonenal, ferrous sulfate) and excitotoxic (glutamate) insults. We observed that urocortin is 10-fold more potent than CRH in protecting hippocampal neurons from insult, whereas urocortin II is ineffective. RT-PCR and sequencing analyses revealed the presence of both CRHR1 and CRHR2 in the hippocampal cultures, with CRHR1 being expressed at much higher levels than CRHR2. Using subtype-selective CRH receptor antagonists, we provide evidence that the neuroprotective effect of exogenously added urocortin is mediated by CRHR1. Furthermore, we provide evidence that the signaling pathway that mediates the neuroprotective effect of urocortin involves cAMP-dependent protein kinase, protein kinase C, and mitogen-activated protein kinase. This is the first demonstration of a biological activity of urocortin in hippocampal neurons, suggesting a role for the peptide in adaptive responses of hippocampal neurons to potentially lethal oxidative and excitotoxic insults.


Assuntos
Hormônio Liberador da Corticotropina/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Aldeídos/toxicidade , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoproteção/fisiologia , Inibidores Enzimáticos/farmacologia , Compostos Ferrosos/toxicidade , Ácido Glutâmico/toxicidade , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Urocortinas
9.
FASEB J ; 17(6): 767-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12594176

RESUMO

The catalytic subunit of telomerase (TERT) is a reverse transcriptase (RT) that adds a six-base DNA repeat onto chromosome ends and prevents their shortening during successive cell divisions. Telomerase is associated with cell immortality and cancer, which may by related to the ability of TERT to prevent apoptosis by stabilizing telomeres. However, fundamental information concerning the antiapoptotic function of TERT is lacking, including whether RT activity and/or nuclear localization are required and where telomerase acts to suppress the cell death process. Here, we show that overexpression of wild-type human TERT in HeLa cells, and in a cells lacking TERT but containing the telomerase RNA template, increases their resistance to apoptosis induced by the DNA damaging agent etoposide or the bacterial alkaloid staurosporine. In contrast, TERT mutants with disruptions of either the RT domain or a 14-3-3 binding domain fail to protect cells against apoptosis, and overexpression of TERT in cells lacking the telomerase RNA template is also ineffective in preventing apoptosis. Additional findings show that TERT suppresses apoptosis at an early step before release of cytochrome c and apoptosis-inducing factor from mitochondria. We conclude that both RT activity and 14-3-3 protein binding ability are required for the antiapoptotic function of TERT in tumor cells and that TERT can suppress a nuclear signal(s) that is an essential component of apoptotic cascades triggered by diverse stimuli.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Telomerase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose , Sítios de Ligação/genética , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Grupo dos Citocromos c/metabolismo , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Etoposídeo/farmacologia , Flavoproteínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mutação , Ligação Proteica , DNA Polimerase Dirigida por RNA/genética , Estaurosporina/farmacologia , Telomerase/genética , Tirosina 3-Mono-Oxigenase/genética
10.
Nat Commun ; 6: 8888, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26586091

RESUMO

Despite considerable evidence that RNA-binding proteins (RBPs) regulate mRNA transport and local translation in dendrites, roles for axonal RBPs are poorly understood. Here we demonstrate that a non-telomeric isoform of telomere repeat-binding factor 2 (TRF2-S) is a novel RBP that regulates axonal plasticity. TRF2-S interacts directly with target mRNAs to facilitate their axonal delivery. The process is antagonized by fragile X mental retardation protein (FMRP). Distinct from the current RNA-binding model of FMRP, we show that FMRP occupies the GAR domain of TRF2-S protein to block the assembly of TRF2-S-mRNA complexes. Overexpressing TRF2-S and silencing FMRP promotes mRNA entry to axons and enhances axonal outgrowth and neurotransmitter release from presynaptic terminals. Our findings suggest a pivotal role for TRF2-S in an axonal mRNA localization pathway that enhances axon outgrowth and neurotransmitter release.


Assuntos
Axônios/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Transporte Axonal , Transporte Biológico , Proteínas de Transporte , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Proteína 2 de Ligação a Repetições Teloméricas/genética
11.
Neuromolecular Med ; 5(3): 219-34, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15626822

RESUMO

The signaling mechanisms by which brain macrophages and microglia (BMM) respond to injury and disease, and how their responses affect neurodegenerative processes are largely unknown. Here we show that bone marrow transplantation can be used to introduce genetically modified BMM into the adult mouse brain to reveal the functions of one or more BMM genes in neuronal injury responses. Mice in which endogenous BMM were replaced with cells from mice lacking p55 and p75 tumor necrosis factor (TNF) receptors exhibit increased vulnerability of hippocampal neurons to excitotoxic injury suggesting a role for TNF signaling in BMM in the excitotoxic injury response. Neurons in the brains of mice with BMM lacking nitric oxide synthase exhibit reduced protein nitration and are less vulnerable to excitotoxic damage, indicating a pivotal role for BMM nitric oxide production in excitotoxic neuronal damage.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Neurotoxinas/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Transplante de Medula Óssea , Morte Celular/fisiologia , Diferenciação Celular/genética , Predisposição Genética para Doença/genética , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Macrófagos/citologia , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/transplante , Degeneração Neural/fisiopatologia , Nitratos/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintase/genética , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/genética , Células-Tronco/fisiologia
12.
J Comp Neurol ; 458(3): 272-92, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12619081

RESUMO

The mossy fiber pathway in the dentate gyrus undergoes sprouting and synaptic reorganization in response to seizures. The types of new synapses, their location and number, and the identity of their postsynaptic targets determine the functional properties of the reorganized circuitry. The goal of this study was to characterize the types and proportions of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. In normal rats, synapses labeled by Timm histochemistry or dynorphin immunohistochemistry were rarely observed in the supragranular region of the inner molecular layer when examined by electron microscopy. In epileptic rats, sprouted mossy fiber synaptic terminals were frequently observed. The ultrastructural analysis of the types of sprouted synapses revealed that 1) in the supragranular region, labeled synaptic profiles were more frequently axospinous than axodendritic, and many axospinous synapses were perforated; 2) sprouted mossy fiber synaptic terminals formed exclusively asymmetric, putatively excitatory synapses with dendritic spines and shafts in the supragranular region and with the soma of granule cells in the granule cell layer; 3) in contrast to the large sprouted mossy fiber synapses in resected human epileptic hippocampus, the synapses formed by sprouted mossy fibers in rats were smaller; and 4) in several cases, the postsynaptic targets of sprouted synapses were identified as granule cells, but, in one case, a sprouted synaptic terminal formed a synapse with an inhibitory interneuron. The results demonstrate that axospinous asymmetric synapses are the most common type of synapse formed by sprouted mossy fiber terminals, supporting the viewpoint that most sprouted mossy fibers contribute to recurrent excitation in epilepsy.


Assuntos
Epilepsia/patologia , Cones de Crescimento/patologia , Cones de Crescimento/ultraestrutura , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/ultraestrutura , Plasticidade Neuronal/fisiologia , Animais , Epilepsia/fisiopatologia , Cones de Crescimento/fisiologia , Imuno-Histoquímica , Ácido Caínico , Excitação Neurológica/fisiologia , Masculino , Microscopia Eletrônica , Fibras Musgosas Hipocampais/fisiopatologia , Ratos , Ratos Sprague-Dawley
13.
Restor Neurol Neurosci ; 21(1-2): 1-10, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12808197

RESUMO

PURPOSE: Adeno-associated virus (AAV) can infect a wide variety of mammalian cell types and is capable of infecting both dividing and non-dividing cell populations. Here we report the construction of a recombinant AAV vector which expresses the SV40 large T protein (AAV-T) and the use of this vector to immortalize primary cells from embryonic rat mesencephalon. METHODS: The AAV-T vector was constructed by introducing the BamH1 fragment of the pCMV/SVE/Neo plasmid containing T antigen and SV40 regulatory elements into the JM48 plasmid containing the inverted terminal repeats of AAV. Neuronal cultures from E-12 rat mesencephalon were grown in defined media supplemented with basic fibroblast growth factor. These cells were infected with the AAV-T vector. RESULTS: A cell line (designated RMAT) and six subclones were established from these cultures through multiple passages. This cell line was immunoreactive for SV40 large T antigen and the cytoskeletal proteins nestin and vimentin. Morphological differentiation and expression of neurofilament 160 kDa were induced by exposure to dibutyrl cyclic AMP. Immunoassays performed to measure endogenous production of growth factors showed that RMAT cells produced high levels of platelet-derived growth factor (PDGF). CONCLUSIONS: AAV may be a useful vector for the transduction of oncogenes to produce cell lines.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Transformação Celular Viral/fisiologia , Mesencéfalo/citologia , Proteínas do Tecido Nervoso , Fator de Crescimento Derivado de Plaquetas/biossíntese , Transdução Genética , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Antígenos Transformantes de Poliomavirus/química , Antineoplásicos/farmacologia , Western Blotting , Bucladesina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas/microbiologia , Dependovirus/genética , Interações Medicamentosas , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/virologia , Fatores de Crescimento Neural/farmacologia , Nestina , Neurônios/citologia , Inibidores de Fosfodiesterase/farmacologia , Gravidez , Ratos , Fatores de Tempo , Tretinoína/farmacologia
14.
PLoS One ; 6(9): e24515, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931736

RESUMO

CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease.


Assuntos
Cromatina/química , DNA Helicases/biossíntese , Regulação Enzimológica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/biossíntese , Neurônios/metabolismo , Transativadores/biossíntese , Envelhecimento , Doença de Alzheimer/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/fisiologia , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Humanos , Camundongos , Complexos Multiproteicos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos
16.
Trends Neurosci ; 32(11): 559-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19748686

RESUMO

Glioblastoma brain tumors harbor a small population of cancer stem cells that are resistant to conventional chemotherapeutic and radiation treatments, and are believed responsible for tumor recurrence and mortality. The identification of the epigenetic molecular mechanisms that control self-renewal of glioblastoma stem cells will foster development of targeted therapeutic approaches. The transcriptional repressor REST, best known for its role in controlling cell fate decisions in neural progenitor cells, may also be crucial for cancer stem cell self-renewal. Two novel mechanisms for regulating the stability of REST have recently been revealed: these involve the telomere-binding protein TRF2 and the ubiquitin E3 ligase SCFbeta-TrCP. Reduced TRF2 binding to REST, and increased SCFbeta-TrCP activity, target REST for proteasomal degradation and thereby inhibit cancer stem cell proliferation. Neurological side effects of treatments that target REST and TRF2 may be less severe than conventional brain tumor treatments because postmitotic neurons do not express REST and have relatively stable telomeres.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Repressoras/efeitos dos fármacos , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Células Tumorais Cultivadas
17.
Genome Biol ; 8(11): R234, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17988385

RESUMO

BACKGROUND: The structural and functional complexity of the mammalian central nervous system (CNS) is organized and modified by complicated molecular signaling processes that are poorly understood. RESULTS: We measured transcripts of 16,896 genes in 5 CNS regions from cohorts of young, middle-aged and old male and female mice that had been maintained on either a control diet or a low energy diet known to retard aging. Each CNS region (cerebral cortex, hippocampus, striatum, cerebellum and spinal cord) possessed its own unique transcriptome fingerprint that was independent of age, gender and energy intake. Less than 10% of genes were significantly affected by age, diet or gender, with most of these changes occurring between middle and old age. The transcriptome of the spinal cord was the most responsive to age, diet and gender, while the striatal transcriptome was the least responsive. Gender and energy restriction had particularly robust influences on the hippocampal transcriptome of middle-aged mice. Prominent functional groups of age- and energy-sensitive genes were those encoding proteins involved in DNA damage responses (Werner and telomere-associated proteins), mitochondrial and proteasome functions, cell fate determination (Wnt and Notch signaling) and synaptic vesicle trafficking. CONCLUSION: Mouse CNS transcriptomes responded to age, energy intake and gender in a regionally distinctive manner. The systematic transcriptome dataset also provides a window into mechanisms of age-, diet- and sex-related CNS plasticity and vulnerability.


Assuntos
Fatores Etários , Sistema Nervoso Central/metabolismo , Ingestão de Energia , Perfilação da Expressão Gênica , Fatores Sexuais , Animais , Feminino , Masculino , Camundongos , Plasticidade Neuronal , RNA Mensageiro/genética
18.
J Neurochem ; 97(2): 567-81, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16539655

RESUMO

Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Senescência Celular/fisiologia , Dano ao DNA/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Astrócitos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Bromodesoxiuridina/farmacocinética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2 , Clonagem Molecular/métodos , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Embrião de Mamíferos , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Histonas/metabolismo , Humanos , Canais Iônicos/fisiologia , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Neuroblastoma , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína/fisiologia , RNA Mensageiro/biossíntese , Proteína 2 de Ligação a Repetições Teloméricas , Transfecção/métodos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
19.
Exp Neurol ; 191 Suppl 1: S45-59, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15629761

RESUMO

Immortalized central nervous system (CNS) cell lines are useful as in vitro models for innumerable purposes such as elucidating biochemical pathways, studies of effects of drugs, and ultimately, such cells may also be useful for neural transplantation. The SV40 large T (LT) oncoprotein, commonly used for immortalization, interacts with several cell cycle regulatory factors, including binding and inactivating p53 and retinoblastoma family cell-cycle regulators. In an attempt to define the minimal requirements of SV40 T antigen for immortalizing cells of CNS origin, we constructed T155c, encoding the N-terminal 155 amino acids of LT. The p53 binding region is known to reside in the C-terminal region of LT. An additional series of mutants was produced to further narrow the molecular targets for immortalization, and plasmid vectors were constructed for each. In a p53 temperature sensitive cell line model, T64-7B, expression of T155c and all constructs having mutations outside of the first 82 amino acids were capable of overriding cell-cycle block at the non-permissive growth temperature. Several cell lines were produced from fetal rat mesencephalic and cerebral cortical cultures using the T155c construct. The E107K construct contained a mutation in the Rb binding region, but was nonetheless capable of overcoming cell cycle block in T64-7B cell and immortalizing primary cultured cells. Cells immortalized with T155c were often highly dependent on the presence of bFGF for growth. Telomerase activity, telomere length, growth rates, and integrity of the p53 gene in cells immortalized with T155c did not change over 100 population doublings in culture, indicating that cells immortalized with T155c were generally stable during long periods of continuous culture.


Assuntos
Antígenos Virais de Tumores/genética , Transformação Celular Viral/genética , Córtex Cerebral/citologia , Mesencéfalo/citologia , Fragmentos de Peptídeos/genética , Vírus 40 dos Símios/genética , Animais , Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Clonais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/biossíntese , Ratos , Ratos Sprague-Dawley , Telomerase/metabolismo , Telômero/química , Telômero/metabolismo , Temperatura , Transfecção , Proteína Supressora de Tumor p53/genética
20.
J Biol Chem ; 279(27): 28733-43, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15102845

RESUMO

In response to endoplasmic reticulum (ER) stress, cells launch homeostatic and protective responses, but can also activate cell death cascades. A 54 kDa integral ER membrane protein called Herp was identified as a stress-responsive protein in non-neuronal cells. We report that Herp is present in neurons in the developing and adult brain, and that it is regulated in neurons by ER stress; sublethal levels of ER stress increase Herp levels, whereas higher doses decrease Herp levels and induce apoptosis. The decrease in Herp protein levels following a lethal ER stress occurs prior to mitochondrial dysfunction and cell death, and is mediated by caspases which generate a 30-kDa proteolytic Herp fragment. Mutagenesis of the caspase cleavage site in Herp enhances its neuroprotective function during ER stress. While suppression of Herp induction by RNA interference sensitizes neural cells to apoptosis induced by ER stress, overexpression of Herp promotes survival by a mechanism involving stabilization of ER Ca(2+) levels, preservation of mitochondrial function and suppression of caspase 3 activation. ER stress-induced activation of JNK/c-Jun and caspase 12 are reduced by Herp, whereas induction of major ER chaperones is unaffected. Herp prevents ER Ca(2+) overload under conditions of ER stress and agonist-induced ER Ca(2+) release is attenuated by Herp suggesting a role for Herp in regulating neuronal Ca(2+) signaling. By stabilizing ER Ca(2+) homeostasis and mitochondrial functions, Herp serves a neuroprotective function under conditions of ER stress.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/química , Animais , Apoptose , Encéfalo/metabolismo , Caspase 12 , Caspase 3 , Caspases/metabolismo , Morte Celular , Citocromos c/metabolismo , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese , Células PC12 , Plasmídeos/metabolismo , Testes de Precipitina , RNA/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Frações Subcelulares/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA