RESUMO
Nuclear magnetic resonance (NMR) has shown good applications in engineering fields such as well logging and rubber material ageing assessment. However, due to the low magnetic field strength of NMR sensors and the complex working conditions of engineering sites, the signal-to-noise ratio (SNR) of NMR signals is low, and it is usually necessary to increase the number of repeated measurements to improve the SNR, which means a longer measurement time. Therefore, it is especially important to set the measurement parameters appropriately for onsite NMR. In this paper, we propose a stochastic simulation using Monte Carlo methods to predict the measurement curves of [Formula: see text] and [Formula: see text] and correct the measurement parameters of the next step according to the previous measurement results. The method can update the measurement parameters in real time and perform automatic measurements. At the same time, this method greatly reduces the measurement time. The experimental results show that the method is suitable for the measurement of the self-diffusion coefficient D0 and longitudinal relaxation time T1, which are frequently used in NMR measurements.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Simulação por Computador , Engenharia , Espectroscopia de Ressonância MagnéticaRESUMO
Silicone rubber insulation material is widely used for the external insulation of power systems. During the continuous service of a power grid, it will be seriously aged due to the influence of high voltage electric fields and harsh climate environments, which will reduce its insulation performance and service life and cause transmission line failure. How to evaluate the aging performance of silicone rubber insulation materials scientifically and accurately is a hot and difficult issue in the industry. Starting from the composite insulator, which is the most widely used insulating device of silicone rubber insulation materials, this paper expounds the aging mechanism of silicone rubber materials, analyzes the applicability and effectiveness of various existing aging tests and evaluation methods, especially discusses the magnetic resonance detection methods emerging in recent years, and finally summarizes the characterization and evaluation technology of the aging state of silicone rubber insulation materials.
RESUMO
AIM: To accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed. METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients. RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45(+) cells in peripheral blood (PB) detected by flow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from flow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as confirmed by detecting human beta2-microglobulin expression using immunohistochemistry. In this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specific differentiation into CK18-positive human cells in chimeric liver and CD45-positive human cells in chimeric spleen and thymus of recipients. CONCLUSION: Taken together, these findings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising.
Assuntos
Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/fisiologia , Transplante Heterólogo/patologia , Transplante Heterólogo/fisiologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Quimera/fisiologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Feminino , Feto/patologia , Humanos , Imuno-Histoquímica , Modelos Animais , Transplante de Células-Tronco de Sangue Periférico , Reação em Cadeia da Polimerase , Gravidez , RatosRESUMO
Choroidal neovascularization (CNV) is an important pathologic component of neovascular age-related macular degeneration (AMD), and CNV lesions later develop into fibrous scars, which contribute to the loss of central vision. Nowadays, the precise molecular and cellular mechanisms underlying CNV and subretinal fibrosis have yet to be fully elucidated. Cyclooxygenase-2 (COX-2) has previously been implicated in angiogenesis and fibrosis. However, the role of COX-2 in the pathogenesis of CNV and subretinal fibrosis is poorly understood. The present study reveals several important findings concerning the relationship of COX-2 signaling with CNV and subretinal fibrosis. Experimental CNV lesions were attenuated by the administration of NS-398, a COX-2-selective antagonist. NS-398-induced CNV suppression was found to be mediated by the attenuation of macrophage infiltration and down-regulation of VEGF in the retinal pigment epithelium-choroid complex. Additionally, NS-398 attenuated subretinal fibrosis, in an experimental model of subretinal scarring observed in neovascular AMD, by down-regulation of TGF-ß2 in the retinal pigment epithelium-choroid complex. Moreover, we cultured mouse RPE cells and found that NS-398 decreased the secretion of VEGF and TGF-ß2 in mouse RPE cells. The results of the present study provide new findings regarding the molecular basis of CNV and subretinal fibrosis, and provide a proof-of-concept approach for the efficacy of COX-2 inhibition in treating subretinal fibrosis.
Assuntos
Neovascularização de Coroide/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Nitrobenzenos/uso terapêutico , Retina/patologia , Sulfonamidas/uso terapêutico , Animais , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corioide/patologia , Neovascularização de Coroide/patologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Fibrose , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Nitrobenzenos/farmacologia , Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Sulfonamidas/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alu-positive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)(+), CD34(+) and CD45(+) cells were observed in the chimeric liver on day 10 after PHx-induced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver. CONCLUSION: HRC liver provides a tool for investigating human liver regeneration in a humanized animal model.
Assuntos
Regeneração Hepática , Fígado/citologia , Quimeras de Transplante , Elementos Alu , Animais , Proliferação de Células , Hepatectomia , Humanos , Hibridização In Situ , Leucócitos Mononucleares/transplante , Fenótipo , RatosRESUMO
OBJECTIVE: To develop a tight tetracycline-controlled HCV-C double transgenic mouse model. METHODS: By crossbreeding of ApoE-rtTA-tTS transgenic mice with TRE-HCV-C transgenic mice, the double transgenic mice were produced in the F1 generation. The presence of HCV-C and tTS gene in the F1 generation was confirmed by PCR, followed by further identification and quantification of the transgene using Southern blot hybridization. The expression of HCV-C in the liver of the mouse model was detected immunohistochemically. RESULTS AND CONCLUSION: Two transgenic mice were obtained, which contained ApoE-rtTA-tTS and TRE-HCV-C genes in the genome. Five founders contained HCV-C gene as confirmed by PCR and Southern blot hybridization. The tight tetracycline-controlled system may facilitate further study of HCV-C gene expression and gene therapy of hepatic cellular carcinoma.
Assuntos
Apolipoproteínas E/genética , Tetraciclina/farmacologia , Transativadores/genética , Proteínas do Core Viral/genética , Animais , Southern Blotting , Cruzamento , Cruzamentos Genéticos , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos da Hepatite C/genética , Antígenos da Hepatite C/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da PolimeraseRESUMO
We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.