RESUMO
Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.
Assuntos
COVID-19/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Plantas/metabolismo , Pneumonia/metabolismo , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , SARS-CoV-2/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Células U937 , Células VeroRESUMO
Primary meningococcal arthritis (PMA) is a relatively rare diagnosis where the role of early surgical intervention for its treatment is not well defined. We report a case of PMA in a young otherwise healthy patient who developed polyarticular joint pain secondary to Niessieria meningitidis without systemic symptoms of meningitis or meningococcemia. He underwent a prolonged course of intravenous antibiotics and serial aspirations of his shoulder. However, symptoms in his shoulder did not improve and he later underwent surgical irrigation and debridement.Intraoperatively, the patient had no signs of articular damage to his right shoulder despite prolonged clinically symptomatic disease. Six weeks after surgery, he has regained normal strength and full range of motion without any deficits.Nonoperative management of PMA is frequently, but not invariably, successful. We report a patient with this diagnosis who ultimately needed surgical evacuation of his shoulder joint to achieve resolution of his symptoms.
Assuntos
Artrite Infecciosa/microbiologia , Desbridamento , Drenagem , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/isolamento & purificação , Articulação do Ombro/cirurgia , Adulto , Antibacterianos/administração & dosagem , Anti-Infecciosos/administração & dosagem , Artrite Infecciosa/cirurgia , Ceftriaxona/administração & dosagem , Ciprofloxacina/administração & dosagem , Doxiciclina/administração & dosagem , Quimioterapia Combinada , Humanos , Masculino , Infecções Meningocócicas/cirurgia , Amplitude de Movimento Articular , Líquido Sinovial/microbiologiaRESUMO
Objective: This study aimed to explore the effects of group prenatal health care combined with happiness training on delivery mode and maternal role adaptation in elderly primiparous women. Methods: A total of 110 elderly primiparous women who were expected to deliver in hospital from January 2020 to December 2021 were selected and assigned to two equal size groups: Group A and Group B. Results:After the nursing intervention, the natural delivery rate of Group A was 85.45%, significantly higher than that of Group B at 52.73% (P<0.05). The initial feeding time and first lactation time of Group A were significantly shorter than those of Group B, and the 48-hour lactation volume was higher than that of Group B (P<0.05). The RAQ scores of Group A, including maternal role happiness score, the baby's impact on the mother's life score, baby's daily living care ability score, and maternal role belief score, were all higher than those of Group B (P<0.05). The GWB score of Group A was significantly higher than that of Group B, while the EPDS score was significantly lower than that of Group B (P<0.05). Conclusion: Group prenatal health care combined with happiness training can improve the delivery mode of elderly primiparous women, help them adapt better to their maternal role, and enhance their subjective sense of well-being.
Assuntos
Aleitamento Materno , Felicidade , Lactente , Idoso , Gravidez , Humanos , Feminino , Família , Comportamentos Relacionados com a Saúde , Atenção à SaúdeRESUMO
In this study, exosomes used to encapsulate curcumin (Exo-cur) or a signal transducer and activator of transcription 3 (Stat3) inhibitor, i.e., JSI124 (Exo-JSI124) were delivered noninvasively to microglia cells via an intranasal route. The results generated from three inflammation-mediated disease models, i.e., a lipopolysaccharide (LPS)-induced brain inflammation model, experimental autoimmune encephalitis and a GL26 brain tumor model, showed that mice treated intranasally with Exo-cur or Exo-JSI124 are protected from LPS-induced brain inflammation, the progression of myelin oligodendrocyte glycoprotein (MOG) peptide induced experimental autoimmune encephalomyelitis (EAE), and had significantly delayed brain tumor growth in the GL26 tumor model. Intranasal administration of Exo-cur or Exo-JSI124 led to rapid delivery of exosome encapsulated drug to the brain that was selectively taken up by microglial cells, and subsequently induced apoptosis of microglial cells. Our results demonstrate that this strategy may provide a noninvasive and novel therapeutic approach for treating brain inflammatory-related diseases.
Assuntos
Anti-Inflamatórios/uso terapêutico , Portadores de Fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Exossomos , Administração Intranasal , Animais , Anti-Inflamatórios/administração & dosagem , Neoplasias Encefálicas/patologia , Humanos , Camundongos , Microglia/metabolismoRESUMO
Exosomes released from tumor cells having been shown to induce interleukin-6 release from myeloid-derived suppressor cells in a Toll-like receptor 2/Stat3-dependent manner. In this study, we show that exosomes released from tumor cells re-isolated from syngeneic mice are capable of inducing interleukin-6 in a Toll-like receptor 2-independent manner, whereas the data generated from exosomes of tumor cells having undergone numerous in vitro passages induce interleukin-6 in a Toll-like receptor 2-dependent manner. This discrepancy may be due to the source of tumor cells used to generate the exosomes for this study. These results suggest that exosomes released from tumor cells that are not within a tumor microenvironment may not realistically represent the role of tumor exosomes in vivo. This is an important consideration since frequently passing tumor cells in vivo is an accepted practice for studying tumor exosome-mediated inflammatory responses.
Assuntos
Exossomos/metabolismo , Interleucina-6/metabolismo , Linfoma/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Melanoma Experimental/metabolismo , Células Mieloides/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Linfoma/patologia , Neoplasias Mamárias Experimentais/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Fator 88 de Diferenciação Mieloide/metabolismo , Baço/citologia , Baço/metabolismo , Linfócitos T/metabolismo , Microambiente TumoralRESUMO
Diet and bile play critical roles in shaping gut microbiota, but the molecular mechanism underlying interplay with intestinal microbiota is unclear. Here, we showed that lemon-derived exosome-like nanoparticles (LELNs) enhance lactobacilli toleration to bile. To decipher the mechanism, we used Lactobacillus rhamnosus GG (LGG) as proof of concept to show that LELNs enhance LGG bile resistance via limiting production of Msp1 and Msp3, resulting in decrease of bile accessibility to cell membrane. Furthermore, we found that decline of Msps protein levels was regulated through specific tRNAser UCC and tRNAser UCG decay. We identified RNase P, an essential housekeeping endonuclease, being responsible for LELNs-induced tRNAser UCC and tRNAser UCG decay. We further identified galacturonic acid-enriched pectin-type polysaccharide as the active factor in LELNs to increase bile resistance and downregulate tRNAser UCC and tRNAser UCG level in the LGG. Our study demonstrates a tRNA-based gene expression regulation mechanism among lactobacilli to increase bile resistance.
RESUMO
High-fat diet (HFD) decreases insulin sensitivity. How high-fat diet causes insulin resistance is largely unknown. Here, we show that lean mice become insulin resistant after being administered exosomes isolated from the feces of obese mice fed a HFD or from patients with type II diabetes. HFD altered the lipid composition of exosomes from predominantly phosphatidylethanolamine (PE) in exosomes from lean animals (L-Exo) to phosphatidylcholine (PC) in exosomes from obese animals (H-Exo). Mechanistically, we show that intestinal H-Exo is taken up by macrophages and hepatocytes, leading to inhibition of the insulin signaling pathway. Moreover, exosome-derived PC binds to and activates AhR, leading to inhibition of the expression of genes essential for activation of the insulin signaling pathway, including IRS-2, and its downstream genes PI3K and Akt. Together, our results reveal HFD-induced exosomes as potential contributors to the development of insulin resistance. Intestinal exosomes thus have potential as broad therapeutic targets.
Assuntos
Dieta Hiperlipídica , Exossomos/metabolismo , Resistência à Insulina/genética , Fosfatidilcolinas/metabolismo , Regulação para Cima/genética , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/complicações , Dislipidemias/genética , Dislipidemias/patologia , Células Epiteliais/metabolismo , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fezes , Regulação da Expressão Gênica , Intolerância à Glucose , Proteínas de Fluorescência Verde/metabolismo , Humanos , Insulina/metabolismo , Interleucina-6/sangue , Intestinos/citologia , Lipídeos/química , Fígado/metabolismo , Fígado/patologia , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo , Fator de Necrose Tumoral alfa/sangueRESUMO
Plant exosomes protect plants against infection; however, whether edible plant exosomes can protect mammalian hosts against infection is not known. In this study, we show that ginger exosome-like nanoparticles (GELNs) are selectively taken up by the periodontal pathogen Porphyromonas gingivalis in a GELN phosphatidic acid (PA) dependent manner via interactions with hemin-binding protein 35 (HBP35) on the surface of P. gingivalis. Compared with PA (34:2), PA (34:1) did not interact with HBP35, indicating that the degree of unsaturation of PA plays a critical role in GELN-mediated interaction with HBP35. On binding to HBP35, pathogenic mechanisms of P. gingivalis were significantly reduced following interaction with GELN cargo molecules, including PA and miRs. These cargo molecules interacted with multiple pathogenic factors in the recipient bacteria simultaneously. Using edible plant exosome-like nanoparticles as a potential therapeutic agent to prevent/treat chronic periodontitis was further demonstrated in a mouse model.
RESUMO
In this study, our data show that in young BXD12 mice, the implanted TS/A tumor regressed in 4 weeks after implantation, and this regression was associated with extensive T cell infiltration. In contrast, in old BXD12 mice, it was observed that there was rapid tumor growth by 7 weeks. T cell cytotoxicity against TS/A tumor cells exhibited a significant age-related decline, which was correlated with a decline in CD3(+) T cell infiltration of the tumor. Furthermore, the decline of T cell tumor cytotoxicity in aged BXD12 mice was also correlated with the accumulation of CD11b(+)Gr1(+) myeloid-derived suppressor cells in the spleen. Adoptive transfer of these accumulated CD11b(+)Gr1(+)cells from aged mice to 2-month-old BXD12 mice led to the delay of the rejection of implanted tumor cells. The depletion of CD11b(+)Gr1(+)cells from aged BXD12 mice led to the slower growth of tumor. Induction of arginase 1 in myeloid cells isolated from aged mice plays a partial role in immune suppression of T cell cytotoxicity. Thus, the accumulation of immunosuppresssing myeloid cells appears to contribute to the increase of tumor susceptibility as the age of mice increases.
Assuntos
Envelhecimento/imunologia , Tolerância Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Animais/imunologia , Células Mieloides/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Transferência Adotiva , Fatores Etários , Envelhecimento/patologia , Animais , Arginase/biossíntese , Antígenos CD11/análise , Complexo CD3/análise , Linhagem Celular Tumoral , Indução Enzimática , Feminino , Linfócitos do Interstício Tumoral/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Células Mieloides/enzimologia , Células Mieloides/patologia , Baço/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/patologia , Fatores de TempoRESUMO
Exosomal particular size of 30-100 nm matches the size criterion for nanoparticles, and opens up the possibility of using exosomes as a nanoparticle drug carrier. More importantly, exosomes released from different types of host cells have different biological effects and targeting specificities. Therefore, depending on the therapeutic goal, different types of exosomes can be combined with specific drugs and serve as carriers so that personalized medicine needs are met. In addition, exosomes do not appear to have cytotoxicity. Based on the perceived advantages of exosomes, they may well serve as a next generation drug delivery mechanism that combines nanoparticle size with a non-cytotoxic effect, target specificity, and a high drug carrying capacity, to make them useful in the treatment of a variety of diseases. This review will focus on exosomes as a biological nanoparticle drug carrier with emphasis on their immune-regulatory activities.
Assuntos
Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Nanopartículas , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/metabolismo , Humanos , Imunomodulação/fisiologia , Tamanho da Partícula , Medicina de PrecisãoRESUMO
OBJECTIVE: We sought to determine whether exosome-like vesicles (ELVs) released from adipose tissue play a role in activation of macrophages and subsequent development of insulin resistance in a mouse model. RESEARCH DESIGN AND METHODS: ELVs released from adipose tissue were purified by sucrose gradient centrifugation and labeled with green fluorescent dye and then intravenously injected into B6 ob/ob mice (obese model) or B6 mice fed a high-fat diet. The effects of injected ELVs on the activation of macrophages were determined through analysis of activation markers by fluorescence-activated cell sorter and induction of inflammatory cytokines using an ELISA. Glucose tolerance and insulin tolerance were also evaluated. Similarly, B6 mice with different gene knockouts including TLR2, TLR4, MyD88, and Toll-interleukin-1 receptor (TIR) domain-containing adaptor protein inducing interferon-beta (TRIF) were also used for testing their responses to the injected ELVs. RESULTS: ELVs are taken up by peripheral blood monocytes, which then differentiate into activated macrophages with increased secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Injection of obELVs into wild-type C57BL/6 mice results in the development of insulin resistance. When the obELVs were intravenously injected into TLR4 knockout B6 mice, the levels of glucose intolerance and insulin resistance were much lower. RBP4 is enriched in the obELVs. Bone marrow-derived macrophages preincubated with recombinant RBP4 led to attenuation of obELV-mediated induction of IL-6 and TNF-alpha. CONCLUSIONS: ELVs released by adipose tissue can act as a mode of communication between adipose tissues and macrophages. The obELV-mediated induction of TNF-alpha and IL-6 in macrophages and insulin resistance requires the TLR4/TRIF pathway.
Assuntos
Tecido Adiposo/fisiologia , Exossomos/fisiologia , Resistência à Insulina/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Microscopia Eletrônica , Monócitos/citologia , Monócitos/fisiologia , Proteínas Recombinantes/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genéticaRESUMO
In common with many other cell types, synovial fibroblasts produce exosomes. In this study, we show that the exosomes produced by synovial fibroblasts obtained from individuals with rheumatoid arthritis (RASF), but not exosomes produced by synovial fibroblasts obtained from individuals with osteoarthritis, contain a membrane bound form of TNF-alpha as demonstrated by colloidal gold immunostaining of TNF-alpha and confirmed by both Western blot and mass spectrometry. The RASF-derived exosomes, but not exosomes derived from fibroblasts obtained from individuals with osteoarthritis, are cytotoxic for the L929 cell, a TNF-alpha-sensitive cell line, and stimulate activation of NF-kappaB and induction of collagenase-1 in RASF. These effects are blocked by addition of soluble TNFR1 (sTNFbp), suggesting that a TNF-alpha-signaling pathway mediates these biological activities. sTNFbp also reduced the production of exosomes by RASF, suggesting the interruption of a positive amplification loop. Exosomes can transmit signals between cells, and RASF exosomes, effectively taken up by anti-CD3-activated T cells, activated AKT and NF-kappaB and rendered these activated T cells resistant to apoptosis. Neutralization of exosomal membrane TNF-alpha by sTNFbp partially reversed this resistance, suggesting that not only TNF-alpha but also additional exosomal proteins may contribute to the development of apoptosis resistance.
Assuntos
Apresentação de Antígeno , Apoptose/imunologia , Exocitose/imunologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/fisiologia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Idoso , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Citotoxicidade Imunológica , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Osteoartrite/imunologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Rheumatoid arthritis synovial fibroblasts (RASFs) contribute to arthritic cartilage degradation. Although RASFs are normally resistant to apoptosis, Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based gene therapy has been successfully used in a mouse model of arthritis. We investigated this further by treating human RASFs with nontoxic doses of the proteasome inhibitor lactacystin. Treatment induced cytosolic accumulation of p53 and enhanced the susceptibility of RASFs to apoptosis mediated by TRAIL-R2 (DR5) but not Fas. A specific role for p53 in TRAIL-R2-mediated apoptosis was indicated by the ability of p53 siRNA to significantly reduce RASF apoptosis and by the reduced apoptosis of RASFs bearing p53 mutations on treatment with anti-DR5 antibody or anti-DR5 antibody plus lactacystin. p53 immunoprecipitation followed by mass spectrometry identified a vimentin-p53 complex, an interaction that was confirmed by reciprocal vimentin-p53 immunoprecipitation and by co-immunofluorescence. Interestingly, human caspase-4 cleaved human vimentin, and blockade of caspase-4 with a chemical inhibitor or with specific siRNA significantly inhibited TRAIL-R2-mediated apoptosis of RASFs. Furthermore, blockade of caspase-4 was paralleled by persistence of a cytosolic pattern of p53 and absence of p53 translocation to the nucleus. Taken together, our findings suggest a unique role for caspase-4 in cleaving vimentin and releasing cytosolic p53 for nuclear translocation, events that may regulate the sensitivity of RASFs to receptor-mediated apoptosis.