RESUMO
The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.
Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Epitelial do Ovário/imunologia , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Proteínas de Membrana/imunologia , Neoplasias Cutâneas/imunologia , eIF-2 Quinase/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos , Terapia de Imunossupressão , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferon beta/genética , Interferon beta/imunologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Resposta a Proteínas não Dobradas/imunologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/genéticaRESUMO
BACKGROUND: Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes. METHODS: Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12â months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed. RESULTS: ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1â s (+10%) and body mass index (+1.0â kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride. CONCLUSION: ETI is associated with unique changes in innate immune function and clinical outcomes.
Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Agonistas dos Canais de Cloreto/uso terapêutico , Mutação , Macrófagos/metabolismoRESUMO
Rakicidin A is a cyclic depsipeptide that has exhibited unique growth inhibitory activity against chronic myelogenous leukemia stem cells. Furthermore, rakicidin A has five chiral centers with unknown stereochemical assignment, and thus, can be represented by one of 32 possible stereoisomers. To predict the most probable stereochemistry of rakicidin A, calculations and structural comparison with natural cyclic depsipeptides were applied. A total synthesis of the proposed structure was subsequently completed and highlighted by the creation of a sterically hindered ester bond (C1-C15) through trans-acylation from an easily established isomer (C1-C13). The analytic data of the synthetic target were consistent with that of natural rakicidin A, and then the absolute configuration of rakicidin A was assigned as 2S, 3S, 14S, 15S, 16R. This work suggests strategies for the determination of unknown chiral centers in other cyclic depsipeptides, such as rakicidin B, C, D, BE-43547, and vinylamycin, and facilitates the investigations of rakicidin A as an anticancer stem cell agent.
Assuntos
Lipopeptídeos/química , Peptídeos Cíclicos/química , Lipopeptídeos/síntese química , Estrutura Molecular , Peptídeos Cíclicos/síntese químicaRESUMO
Emerging evidence suggests that the tumor suppressor p53 is also a crucial regulator for many physiological processes. Previous observations indicate that p53 suppresses inflammation by inhibiting inflammatory antigen-presenting cells. To investigate the potential role of p53 in autoimmune effector T cells, we generated p53(null)CD45.1 mice by crossing p53(null)CD45.2 and CD45.1 mice. We demonstrate that p53(null)CD45.1 mice spontaneously developed autoimmunity, with a significant increase in IL-17-producing Th17 effectors in their lymph nodes (4.7 ± 1.0%) compared to the age-matched counterparts (1.9 ± 0.8% for p53(null)CD45.2, 1.1 ± 0.2% for CD45.1, and 0.5 ± 0.1% for CD45.2 mice). Likewise, p53(null)CD45.1 mice possess highly elevated serum levels of inflammatory cytokines IL-17 and IL-6. This enhanced Th17 response results largely from an increased sensitivity of p53(null)CD45.1 T cells to IL-6-induced STAT3 phosphorylation. Administration of STAT3 inhibitor S31-201 (IC50 of 38.0 ± 7.2 µM for IL-6-induced STAT3 phosphorylation), but not PBS control, to p53(null)CD45.1 mice suppressed Th17 effectors and alleviated autoimmune pathology. This is the first report revealing that p53 activity in T cells suppresses autoimmunity by controlling Th17 effectors. This study suggests that p53 serves as a guardian of immunological functions and that the p53-STAT3-Th17 axis might be a therapeutic target for autoimmunity.
Assuntos
Autoimunidade/imunologia , Interleucina-17/imunologia , Fator de Transcrição STAT3/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Interleucina-17/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Masculino , Camundongos , Camundongos Congênicos , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
PURPOSE: The goal of this study was to test the hypothesis that by controlling intracellular uptake, organic cation transporter 1, Oct1 is a key determinant of the disposition and toxicity of cis-diammine(pyridine)chloroplatinum(II)(CDPCP) and oxaliplatin. METHODS: Pharmacokinetics, tissue accumulation and toxicity of CDPCP and oxaliplatin were compared between Oct1-/- and wild-type mice. RESULTS: After intravenous administration, hepatic and intestinal accumulation of CDPCP was 2.7-fold and 3.9-fold greater in Oct1 wild-type mice (p < 0.001). Deletion of Oct1 resulted in a significantly decreased clearance (0.444 ± 0.0391 ml/min*kg versus 0.649 ± 0.0807 ml/min*kg in wild-type mice, p < 0.05) and volume distribution (1.90 ± 0.161 L/kg versus 3.37 ± 0.196 L/kg in wild-type mice, p < 0.001). Moreover, Oct1 deletion resulted in more severe off-target toxicities in CDPCP-treated mice. Histologic examination of the liver and measurements of liver function indicated that the level of hepatic toxicity was mild and reversible, but was more apparent in the wild-type mice. In contrast, the effect of Oct1 on the pharmacokinetics and toxicity of oxaliplatin in the mice was minimal. CONCLUSIONS: Our study suggests that Oct1 plays an important role in the pharmacokinetics, tissue distribution and toxicity of CDPCP, but not oxaliplatin.
Assuntos
Transportador 1 de Cátions Orgânicos/fisiologia , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/toxicidade , Animais , Células Cultivadas , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Transportador 1 de Cátions Orgânicos/deficiência , Transportador 1 de Cátions Orgânicos/genética , Oxaliplatina , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologiaRESUMO
We have identified unique chemical and biological properties of a cationic monofunctional platinum(II) complex, cis-diammine(pyridine)chloroplatinum(II), cis-[Pt(NH(3))(2)(py)Cl](+) or cDPCP, a coordination compound previously identified to have significant anticancer activity in a mouse tumor model. This compound is an excellent substrate for organic cation transporters 1 and 2, also designated SLC22A1 and SLC22A2, respectively. These transporters are abundantly expressed in human colorectal cancers, where they mediate uptake of oxaliplatin, cis-[Pt(DACH)(oxalate)] (DACH = trans-R,R-1,2-diaminocyclohexane), an FDA-approved first-line therapy for colorectal cancer. Unlike oxaliplatin, however, cDPCP binds DNA monofunctionally, as revealed by an x-ray crystal structure of cis-{Pt(NH(3))(2)(py)}(2+) bound to the N7 atom of a single guanosine residue in a DNA dodecamer duplex. Although the quaternary structure resembles that of B-form DNA, there is a base-pair step to the 5' side of the Pt adduct with abnormally large shift and slide values, features characteristic of cisplatin intrastrand cross-links. cDPCP effectively blocks transcription from DNA templates carrying adducts of the complex, unlike DNA lesions of other monofunctional platinum(II) compounds like {Pt(dien)}(2+). cDPCP-DNA adducts are removed by the nucleotide excision repair apparatus, albeit much less efficiently than bifunctional platinum-DNA intrastrand cross-links. These exceptional characteristics indicate that cDPCP and related complexes merit consideration as therapeutic options for treating colorectal and other cancers bearing appropriate cation transporters.
Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Adutos de DNA/química , Reparo do DNA/efeitos dos fármacos , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Transportador 1 de Cátions Orgânicos/metabolismo , Compostos Organoplatínicos/farmacologia , Oxaliplatina , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Soluções , Transcrição Gênica/efeitos dos fármacosRESUMO
Metformin is among the most widely prescribed drugs for the treatment of type 2 diabetes. Organic cation transporter 1 (OCT1) plays a role in the hepatic uptake of metformin, but its role in the therapeutic effects of the drug, which involve activation of AMP-activated protein kinase (AMPK), is unknown. Recent studies have shown that human OCT1 is highly polymorphic. We investigated whether OCT1 plays a role in the action of metformin and whether individuals with OCT1 polymorphisms have reduced response to the drug. In mouse hepatocytes, deletion of Oct1 resulted in a reduction in the effects of metformin on AMPK phosphorylation and gluconeogenesis. In Oct1-deficient mice the glucose-lowering effects of metformin were completely abolished. Seven nonsynonymous polymorphisms of OCT1 that exhibited reduced uptake of metformin were identified. Notably, OCT1-420del (allele frequency of about 20% in white Americans), previously shown to have normal activity for model substrates, had reduced activity for metformin. In clinical studies, the effects of metformin in glucose tolerance tests were significantly lower in individuals carrying reduced function polymorphisms of OCT1. Collectively, the data indicate that OCT1 is important for metformin therapeutic action and that genetic variation in OCT1 may contribute to variation in response to the drug.
Assuntos
Variação Genética/fisiologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Transportador 1 de Cátions Orgânicos/genética , Células 3T3-L1 , Animais , Linhagem Celular , Células Clonais , Feminino , Humanos , Hipoglicemiantes/antagonistas & inibidores , Masculino , Metformina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportador 1 de Cátions Orgânicos/fisiologia , Polimorfismo GenéticoRESUMO
Cystic fibrosis (CF) is characterized by chronic bacterial infections and heightened inflammation. Widespread ineffective antibiotic use has led to increased isolation of drug resistant bacterial strains from respiratory samples. (R)-roscovitine (Seliciclib) is a unique drug that has many benefits in CF studies. We sought to determine roscovitine's impact on macrophage function and killing of multi-drug resistant bacteria. Human blood monocytes were isolated from CF (F508del/F508del) and non-CF persons and derived into macrophages (MDMs). MDMs were infected with CF clinical isolates of B. cenocepacia and P. aeruginosa. MDMs were treated with (R)-roscovitine or its main hepatic metabolite (M3). Macrophage responses to infection and subsequent treatment were determined. (R)-roscovitine and M3 significantly increased killing of B. cenocepacia and P. aeruginosa in CF MDMs in a dose-dependent manner. (R)-roscovitine-mediated effects were partially dependent on CFTR and the TRPC6 channel. (R)-roscovitine-mediated killing of B. cenocepacia was enhanced by combination with the CFTR modulator tezacaftor/ivacaftor and/or the alternative CFTR modulator cysteamine. (R)-roscovitine also increased MDM CFTR function compared to tezacaftor/ivacaftor treatment alone. (R)-roscovitine increases CF macrophage-mediated killing of antibiotic-resistant bacteria. (R)-roscovitine also enhances other macrophage functions including CFTR-mediated ion efflux. Effects of (R)-roscovitine are greatest when combined with CFTR modulators or cysteamine, justifying further clinical testing of (R)-roscovitine or optimized derivatives.
Assuntos
Burkholderia cenocepacia/imunologia , Burkholderia cenocepacia/patogenicidade , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Macrófagos/imunologia , Fagocitose/efeitos dos fármacos , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Adolescente , Adulto , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Fibrose Cística/imunologia , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Adulto JovemRESUMO
Macrophage dysfunction is fundamentally related to altered immunity in cystic fibrosis (CF). How genetic deficits in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to these defects remains unknown. Rapid advances in genomic editing such as the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) system provide new tools for scientific study. We aimed to create a stable CFTR knockout (KO) in human macrophages in order to study how CFTR regulates macrophage function. Peripheral blood monocytes were isolated from non-CF healthy volunteers and differentiated into monocyte-derived macrophages (MDMs). MDMs were transfected with a CRISPR Cas9 CFTR KO plasmid. CFTR KO efficiency was verified and macrophage halide efflux, phagocytosis, oxidative burst, apoptosis, and cytokine functional assays were performed. CFTR KO in human MDMs was efficient and stable after puromycin selection. CFTR KO was confirmed by CFTR mRNA and protein expression. CFTR function was abolished in CFTR KO MDMs. CFTR KO recapitulated known defects in human CF MDM (CFTR class I/II variants) dysfunction including (1) increased apoptosis, (2) decreased phagocytosis, (3) reduced oxidative burst, and (4) increased bacterial load. Activation of the oxidative burst via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assembly was diminished in CFTR KO MDMs (decreased phosphorylated p47phox). Cytokine production was unchanged or decreased in response to infection in CFTR KO MDMs. In conclusion, we developed a primary human macrophage CFTR KO system. CFTR KO mimics most pathology observed in macrophages obtained from persons with CF, which suggests that many aspects of CF macrophage dysfunction are CFTR-dependent and not just reflective of the CF inflammatory milieu.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Técnicas de Inativação de Genes/métodos , Macrófagos/imunologia , Adulto , Idoso , Sistemas CRISPR-Cas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Edição de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Cystic fibrosis (CF) remains without a definitive cure. Novel therapeutics targeting the causative defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are in clinical use. Lumacaftor/ivacaftor is a CFTR modulator approved for patients homozygous for the CFTR variant p.Phe508del, but there are wide variations in treatment responses preventing prediction of patient responses. We aimed to determine changes in gene expression related to treatment initiation and response. METHODS: Whole-blood transcriptomics was performed using RNA-Seq in 20 patients with CF pre- and 6â¯months post-lumacaftor/ivacaftor (drug) initiation and 20 non-CF healthy controls. Correlation of gene expression with clinical variables was performed by stratification via clinical responses. RESULTS: We identified 491 genes that were differentially expressed in CF patients (pre-drug) compared with non-CF controls and 36 genes when comparing pre-drug to post-drug profiles. Both pre- and post-drug CF profiles were associated with marked overexpression of inflammation-related genes and apoptosis genes, and significant under-expression of T cell and NK cell-related genes compared to non-CF. CF patients post-drug demonstrated normalized protein synthesis expression, and decreased expression of cell-death genes compared to pre-drug profiles, irrespective of clinical response. However, CF clinical responders demonstrated changes in eIF2 signaling, oxidative phosphorylation, IL-17 signaling, and mitochondrial function compared to non-responders. Top overexpressed genes (MMP9 and SOCS3) that decreased post-drug were validated by qRT-PCR. Functional assays demonstrated that CF monocytes normalized calcium (increases MMP9 expression) concentrations post-drug. CONCLUSIONS: Transcriptomics revealed differentially regulated pathways in CF patients at baseline compared to non-CF, and in clinical responders to lumacaftor/ivacaftor.
Assuntos
Aminofenóis/farmacocinética , Aminopiridinas/farmacocinética , Benzodioxóis/farmacocinética , Biomarcadores Farmacológicos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Quinolonas/farmacocinética , Transcriptoma , Adulto , Biomarcadores/sangue , Biomarcadores Farmacológicos/análise , Biomarcadores Farmacológicos/sangue , Agonistas dos Canais de Cloreto/farmacocinética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Combinação de Medicamentos , Feminino , Homozigoto , Humanos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Masculino , Metabolômica/métodos , Mutação , Testes Farmacogenômicos , Variantes Farmacogenômicos , Prognóstico , Transcriptoma/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
BACKGROUND: Inflammation is integral to early disease progression in children with CF. The effect of modifiable environmental factors on infection and inflammation in persons with CF is poorly understood. Our prior studies determined that secondhand smoke exposure (SHSe) is highly prevalent in young children with CF. SHSe is associated with increased inflammation, heightened bacterial burden, and worsened clinical outcomes. However, the specific metabolite and signaling pathways that regulate responses to SHSe in CF are relatively unknown. METHODS: High-resolution metabolomics was performed on plasma samples from infants (n = 25) and children (n = 40) with CF compared to non-CF controls (n = 15). CF groups were stratified according to infant or child age and SHSe status. RESULTS: Global metabolomic profiles segregated by age and SHSe status. SHSe in CF was associated with changes in pathways related to steroid biosynthesis, fatty acid metabolism, cysteine metabolism, and oxidative stress. CF infants with SHSe demonstrated enrichment for altered metabolite localization to the small intestine, liver, and striatum. CF children with SHSe demonstrated metabolite enrichment for organs/tissues associated with oxidative stress including mitochondria, peroxisomes, and the endoplasmic reticulum. In a confirmatory analysis, SHSe was associated with changes in biomarkers of oxidative stress and cellular adhesion including MMP-9, MPO, and ICAM-1. CONCLUSIONS: SHSe in young children and infants with CF is associated with altered global metabolomics profiles and specific biochemical pathways, including enhanced oxidative stress. SHSe remains an important but understudied modifiable variable in early CF disease.
Assuntos
Fibrose Cística/metabolismo , Metabolômica , Poluição por Fumaça de Tabaco , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Fibrose Cística/complicações , Feminino , Humanos , Lactente , Masculino , Estresse OxidativoRESUMO
Acute chest syndrome (ACS) is a significant cause of morbidity and mortality in sickle cell disease (SCD), but preventive, diagnostic, and therapeutic options are limited. Further, ACS and acute vasoccclusive pain crises (VOC) have overlapping features, which causes diagnostic dilemmas. We explored changes in gene expression profiles among patients with SCD hospitalized for VOC and ACS episodes to better understand ACS disease pathogenesis. Whole blood RNA-Seq was performed for 20 samples from children with SCD at baseline and during a hospitalization for either an ACS (n = 10) or a VOC episode (n = 10). Respiratory viruses were identified from nasopharyngeal swabs. Functional gene analyses were performed using modular repertoires, IPA, Gene Ontology, and NetworkAnalyst 3.0. The VOC group had a numerically higher percentage of female, older, and hemoglobin SS participants compared to the ACS group. Viruses were detected in 50% of ACS cases and 20% of VOC cases. We identified 3004 transcripts that were differentially expressed during ACS episodes, and 1802 transcripts during VOC episodes. Top canonical pathways during ACS episodes were related to interferon signaling, neuro-inflammation, pattern recognition receptors, and macrophages. Top canonical pathways in patients with VOC included IL-10 signaling, iNOS signaling, IL-6 signaling, and B cell signaling. Several genes related to antimicrobial function were down-regulated during ACS compared to VOC. Gene enrichment nodal interactions demonstrated significantly altered pathways during ACS and VOC. A complex network of changes in innate and adaptive immune gene expression were identified during both ACS and VOC episodes. These results provide unique insights into changes during acute events in children with SCD.
Assuntos
Anemia Falciforme/genética , Transcriptoma/genética , Síndrome Torácica Aguda/etiologia , Síndrome Torácica Aguda/genética , Adolescente , Anemia Falciforme/complicações , Criança , Pré-Escolar , Feminino , Humanos , Imunidade Inata/genética , Masculino , Dor/etiologia , Análise de Sequência de RNARESUMO
Although without clear scientific rationale, body size-based dosing is often used for administering monoclonal antibodies (mAbs). This simulation study compared the performance of body size-based and fixed dosing in reducing pharmacokinetic (PK) and/or pharmacodynamic (PD) variability in adults for 12 mAbs with published population PK and/or PD models. At the population level, 95th percentile intervals of concentration-time profiles, distribution, and variability of exposure for 1000 subjects after both dosing approaches were examined. At the individual level, the difference between the exposures of patients with extreme body sizes from the typical exposure following both approaches was compared. The results show that the 2 dosing approaches perform similarly across the mAbs investigated with fixed dosing being better for some mAbs and body size-based dosing being better for the others. Based on this finding, we recommend using fixed dosing in first-in-human (FIH) adult studies because it offers other advantages. When sufficient data become available, a full assessment of body size effect on PK/PD should be conducted to determine the optimal dosing approach for phase 3 trials. Other factors that may affect the selection of dosing approach were also discussed. Dosing approach for mAbs in the pediatric population is out of the scope of this study.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Modelos Biológicos , Adulto , Superfície Corporal , Peso Corporal , Ensaios Clínicos como Assunto , Simulação por Computador , Relação Dose-Resposta a Droga , HumanosRESUMO
A novel sesquiterpene lactone, 1beta, 14-peroxy-4alpha-hydroxy-5alphaH, 7alphaH,6betaH-eudesm-11(13)-en-6, 12 olide (1), was isolated from the roots of Vladimiria souliei. The structure was elucidated by spectroscopic methods.
Assuntos
Apiaceae/química , Sesquiterpenos/química , China , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química , Sesquiterpenos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
BACKGROUND: There are no effective treatments for Burkholderia cenocepacia in patients with cystic fibrosis (CF) due to bacterial multi-drug resistance and defective host killing. We demonstrated that decreased bacterial killing in CF is caused by reduced macrophage autophagy due to defective cystic fibrosis transmembrane conductance regulator (CFTR) function. AR-12 is a small molecule autophagy inducer that kills intracellular pathogens such as Francisella. We evaluated the efficacy of AR-12 and a new analogue AR-13 in reducing bacterial burden in CF phagocytes. METHODS: Human CF and non-CF peripheral blood monocyte-derived macrophages, neutrophils, and nasal epithelial cells were exposed to CF bacterial strains in conjunction with treatment with antibiotics and/or AR compounds. RESULTS: AR-13 and not AR-12 had growth inhibition on B. cenocepacia and methicillin-resistantStaphylococcus aureus (MRSA) in media alone. There was a 99% reduction in MRSA in CF macrophages, 71% reduction in Pseudomonas aeruginosa in CF neutrophils, and 70% reduction in non-CF neutrophils using AR-13. Conversely, there was no reduction in B. cenocepacia in infected CF and non-CF macrophages using AR-13 alone, but AR-13 and antibiotics synergistically reduced B. cenocepacia in CF macrophages. AR-13 improved autophagy in CF macrophages and CF patient-derived epithelial cells, and increased CFTR protein expression and channel function in CF epithelial cells. CONCLUSIONS: The novel AR-12 analogue AR-13, in combination with antibiotics, reduced antibiotic-resistant bacterial burden in CF phagocytes, which correlated with increased autophagy and CFTR expression. AR-13 is a novel therapeutic for patients infected with B. cenocepacia and other resistant organisms that lack effective therapies.
Assuntos
Carga Bacteriana/efeitos dos fármacos , Burkholderia cenocepacia/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/patologia , Fagócitos/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cultura de Células , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , HumanosRESUMO
Assay-guided fractionation led to the isolation of nine beta-dihydroagarofuran sesquiterpenoids from the fruits of Celastrus orbiculatus. All isolated beta-dihydroagarofuran sesquiterpenoids were tested for their cytotoxic activity against human melanoma A375-S2 and human cervical carcinoma Hela cell lines. Among them, compounds 1-5 and 7 showed cytotoxic activity. Compound 3 exhibited promising cytotoxicity against both human melanoma A375-S2 and human cervical carcinoma Hela cell lines. The structure-activity relationship was discussed briefly.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Relação Estrutura-AtividadeRESUMO
Despite the addition of cystic fibrosis transmembrane conductance regulator (CFTR) modulators to the cystic fibrosis (CF) treatment regimen, patients with CF continue to suffer from chronic bacterial infections that lead to progressive respiratory morbidity. Host immunity, and macrophage dysfunction specifically, has an integral role in the inability of patients with CF to clear bacterial infections. We sought to characterize macrophage responses to CFTR modulator treatment as we hypothesized that there would be differential effects based on patient genotype. Human CF and non-CF peripheral blood monocyte-derived macrophages (MDMs) were analyzed for CFTR expression, apoptosis, polarization, phagocytosis, bacterial killing, and cytokine production via microscopy, flow cytometry, and ELISA-based assays. Compared to non-CF MDMs, CF MDMs display decreased CFTR expression, increased apoptosis, and decreased phagocytosis. CFTR expression increased and apoptosis decreased in response to ivacaftor or lumacaftor/ivacaftor therapy, and phagocytosis improved with ivacaftor alone. Ivacaftor restored CF macrophage polarization responses to non-CF levels and reduced Pseudomonas aeruginosa bacterial burden, but did not reduce other bacterial loads. Macrophage inflammatory cytokine production decreased in response to ivacaftor alone. In summary, ivacaftor and lumacaftor/ivacaftor have differential impacts on macrophage function with minimal changes observed in CF patients treated with lumacaftor/ivacaftor. Overall improvements in macrophage function in ivacaftor-treated CF patients result in modestly improved macrophage-mediated bacterial killing.
Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Macrófagos/patologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/farmacologia , Adulto , Estudos de Casos e Controles , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas/metabolismo , Combinação de Medicamentos , Feminino , Humanos , Transporte de Íons , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Mutação , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Transdução de SinaisRESUMO
BACKGROUND: Cystic fibrosis (CF) is a life-limiting disease caused by a defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Lumacaftor/Ivacaftor is a novel CFTR modulator approved for patients that are homozygous for Phe508del CFTR, but its clinical effectiveness varies amongst patients, making it difficult to determine clinical responders. Therefore, identifying biochemical biomarkers associated with drug response are clinically important for follow-up studies. METHODS: Serum metabolomics was performed on twenty patients with CF pre- and 6-month post-Lumacaftor/Ivacaftor response via Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Correlation with clinical variables was performed. RESULTS: Metabolomics analysis demonstrated 188 differentially regulated metabolites between patients pre- and post-Lumacaftor/Ivacaftor initiation, with a predominance of lipid and amino acid alterations. The top 30 metabolites were able to differentiate pre- and post-Lumacaftor/Ivacaftor status in greater than 90% of patients via a random-forest confusion matrix. Alterations in bile acids, phospholipids, and bacteria-associated metabolites were the predominant changes associated with drug response. Importantly, changes in metabolic patterns were associated with clinical responders. CONCLUSIONS: Selected key lipid and amino acid metabolic pathways were significantly affected by Lumacaftor/Ivacaftor initiation and similar pathways were affected in clinical responders. Targeted metabolomics may provide useful and relevant biomarkers of CFTR modulator responses.