Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Carcinog ; 63(7): 1349-1361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38712797

RESUMO

Although aberrant methylation of PAX1 is closely associated with cervical cancer (CC), PAX1 methylation (PAX1m) and its role in CC remain to be elucidated. Here, we clarified the biological function of PAX1 in CC. First, PAX1m in ThinPrep cytologic test samples was measured via quantitative methylation-specific PCR. The results showed that PAX1 promoter methylation levels were significantly increased in CC patients (p < 0.001). We also found that PAX1 promoter methylation levels were positively correlated with tumor purity but negatively correlated with immune-infiltration via public databases. Then, CRISPR-based methylation perturbation tools (dCas9-Tet1) were constructed to further demonstrate that DNA methylation participates in the regulation of PAX1 expression directly. Gain- and loss-of-function experiments were used to show that PAX1 overexpression restrained proliferation, migration and improved cisplatin sensitivity by interfering with the WNT/TIMELESS axis in CC cells. Additionally, Co-immunoprecipitation assays further confirmed the interaction between PAX1 and TCF7L2. Taken together, our results suggested that a tumor suppressor role of PAX1 in CC and that CRISPR-based PAX1 demethylation editing might be a promising therapeutic strategy for CC.


Assuntos
Movimento Celular , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Proliferação de Células/genética , Movimento Celular/genética , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo
2.
Environ Res ; 237(Pt 2): 117023, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657601

RESUMO

Erythromycin, a commonly used macrolide antibiotic, plays a crucial role in both human medicine and animal husbandry. However, its abuse has led to residual presence in the environment, with problems such as the emergence of resistant bacteria and enrichment of resistance genes. These issues pose significant risks to human health. Thus far, there are no effective, environmentally friendly methods to manage this problem. Enzymes can specifically degrade erythromycin without causing other problems, but their unrecyclability and environmental vulnerability hinder large-scale application. Enzyme immobilization may help to solve these problems. This study used Cu-BTC, a synthetic metal-organic framework, to immobilize the erythromycin-degrading enzyme EreB. The loading temperature and enzyme quantity were optimized. The Cu-BTC and EreB@Cu-BTC were characterized by various methods to confirm the preparation of Cu-BTC and immobilization of EreB. The maximum enzyme loading capacity was 66.5 mg g-1. In terms of enzymatic properties, immobilized EreB had improved heat (25-45 °C) and alkaline (6.5-10) tolerance, along with greater affinity between the enzyme and its substrate; Km decreased from 438.49 to 372.30 mM. Recycling was also achieved; after 10 cycles, 57.12% of the enzyme activity was maintained. After composite degradation, the antibacterial activity of erythromycin-containing wastewater was examined; the results showed that the novel composite could completely inactivate erythromycin. In summary, Cu-BTC was an ideal carrier for immobilization of the enzyme EreB, and the EreB@Cu-BTC composite has good prospects for the treatment of erythromycin-containing wastewater.

3.
J Environ Manage ; 332: 117372, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731410

RESUMO

Continuous and excessive usage of erythromycin results in serious environmental pollution and presents a health risk to humans. Biological treatment is considered as an efficient and economical method to remove it from the environment. In this study, a novel erythromycin-degrading bacterial strain, W7, isolated from sewage sludge was identified as Paracoccus versutus. Strain W7 degraded 58.5% of 50 mg/L erythromycin in 72 h under the optimal conditions of 35 °C, pH 7.0, and 0.1% sodium citrate with yeast powder in mineral salt medium. It completely eliminated erythromycin from erythromycin fermentation residue at concentrations of 100 and 300 mg/L within 36 and 60 h, respectively. Erythromycin esterase (EreA) was found to be involved in erythromycin metabolism in this strain and was expressed successfully. EreA could hydrolyze erythromycin, and its maximum activity occurred at pH 8.5 and 35 °C. Finally, six intermediates of erythromycin degraded by strain W7 were detected by high performance liquid chromatography mass spectrometry. Based on the novel intermediates and enzymes, we determined two possible pathways of erythromycin degradation by strain W7. This study broadened our understanding of the erythromycin catabolic processes of P. versutus and developed a feasible microbial strategy for removing erythromycin from erythromycin fermentation residue, wastewater, and other erythromycin-contaminated environments.


Assuntos
Paracoccus , Humanos , Paracoccus/metabolismo , Eritromicina/metabolismo , Esgotos , Biodegradação Ambiental
4.
BMC Cancer ; 22(1): 636, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681118

RESUMO

BACKGROUND: Aberrant methylation of EphA7 has been reported in the process of carcinogenesis but not in cervical cancer. Therefore, an integration study was performed to explore the association between EphA7 hypermethylation and cervical cancer and validate the potential value of EphA7 hypermethylation in the diagnosis of cervical cancer. METHODS: We performed an integration study to identify and validate the association between EphA7 methylation and cervical cancer. First, data on EphA7 methylation and expression in cervical cancer were extracted and analyzed via bioinformatics tools. Subsequently, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) were constructed to further demonstrate the association between DNA methylation and EphA7 expression. Ultimately, the clinical value of EphA7 methylation in cervical cancer was validated in cervical tissues and Thinprep cytologic test (TCT) samples by methylation-specific PCR (MSP) and quantitative methylation-specific PCR (QMSP), respectively. RESULTS: Pooled analysis showed that EphA7 promoter methylation levels were significantly increased in cervical cancer compared to normal tissues (P < 0.001) and negatively correlated with EphA7 expression. These prediction results were subsequently confirmed in cell lines; moreover, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) demonstrated that DNA methylation participates in the regulation of EphA7 expression directly. Consistent with these findings, the methylation level and the positive rate of EphA7 gradually increased with severity from normal to cancer stages in TCT samples (P < 0.01). CONCLUSIONS: EphA7 hypermethylation is present in cervical cancer and is a potential biomarker for the diagnosis of cervical cancer.


Assuntos
Metilação de DNA , Receptor EphA7 , Neoplasias do Colo do Útero , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptor EphA7/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética
5.
BMC Cancer ; 21(1): 675, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098886

RESUMO

BACKGROUND: The association between SOX14 and cancer has been reported. The aim of this study was to identify and validate the potential value of SOX14 methylation in the early detection of cervical cancer. METHODS: First, we extracted the data for SOX14 methylation and expression within cervical cancer from The Cancer Genome Atlas (TCGA) database and analysed them via UALCAN, Wanderer, MEXPRESS and LinkedOmics. Subsequently, according to the bioinformatics findings, primers and probes were designed for the most significantly differentiated methylation CpG site and synthesized for methylation-specific PCR (MSP) and quantitative methylation-specific PCR (QMSP) to verify SOX14 methylation in both cervical tissuses and liquid-based cell samples. Eventually, the clinical diagnostic efficacy of SOX14 methylation in the normal, cervical intraepithelial neoplasia, and cancer groups was analysed by ROCAUC. RESULTS: Pooled analysis demonstrated that SOX14 methylation levels were significantly increased in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) compared to normal tissues (P < 0.001). Both the verification and validation cohorts indicated that the methylation level and the positive rate of SOX14 gradually increased with increasing severity from normal to cancer samples (P < 0.01). When the cut-off value was set as 128.45, the sensitivity and specificity of SOX14 hypermethylation in the diagnosis of cervical cancer were 94.12 and 86.46%, respectively. When taken as a screening biomarker (>CINII), the sensitivity was 74.42% and the specificity was 81.48%, with a cut-off value of 10.37. CONCLUSION: SOX14 hypermethylation is associated with cervical cancer and has the potential to be a molecular biomarker for the screening and early diagnosis of cervical cancer.


Assuntos
Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Programas de Rastreamento/métodos , Fatores de Transcrição SOXB2/genética , Neoplasias do Colo do Útero/diagnóstico , Adulto , Biópsia , Colo do Útero/patologia , Ilhas de CpG/genética , Metilação de DNA , Feminino , Humanos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/prevenção & controle
6.
Front Neurol ; 14: 1286592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099070

RESUMO

Objective: Traumatic brain injury (TBI) is a highly prevalent neurological disorder that affects a gradually increasing proportion of older adults. Chronic kidney disease (CKD) significantly contributes to global years of life lost, with an estimated one-tenth of the global population affected by CKD. However, it remains unclear whether CKD impacts TBI prognosis. We conducted a case-control study to investigate the clinical outcomes of TBI patients with or without CKD comorbidity and identified the risk factors associated with a poor prognosis. Methods: From January 2017 through April 2023, 11 patients with TBI and CKD were included, and 27 control TBI cases with normal kidney function were matched by age, gender, and admission Glasgow Coma Scale (GCS) score as the control group. Results: The CKD TBI group had a significantly lower GCS score upon discharge (7.1 ± 5.9) compared to the non-CKD TBI group (13.1 ± 2.6) (p < 0.01). ICU stay time and hospitalization expenses were higher in the CKD group than the non-CKD group, though there were no statistical differences. Additionally, patients in the CKD TBI group had a higher frequency of hospital-acquired infections (54.4%) compared with those in the non-CKD TBI group (7.4%) (p < 0.01). The two groups exhibited no differences in hemoglobin levels, albumin levels, or coagulation function. Logistic regression analysis showed that advanced age, low admission GCS score, elevated blood urea, and creatinine levels were associated with a poor neurological prognosis. Conclusion: TBI patients comorbid with CKD have a poorer prognosis than those with normal kidney function.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36078780

RESUMO

Erythromycin is one of the most commonly used macrolide antibiotics. However, its pollution of the ecosystem is a significant risk to human health worldwide. Currently, there are no effective and environmentally friendly methods to resolve this issue. Although erythromycin esterase B (EreB) specifically degrades erythromycin, its non-recyclability and fragility limit the large-scale application of this enzyme. In this work, palygorskite was selected as a carrier for enzyme immobilization. The enzyme was attached to palygorskite via a crosslinking reaction to construct an effective erythromycin-degradation material (i.e., EreB@modified palygorskite), which was characterized using FT-IR, SEM, XRD, and Brunauer-Emmett-Teller techniques. The results suggested the successful modification of the material and the loading of the enzyme. The immobilized enzyme had a higher stability over varying temperatures (25-65 °C) and pH values (6.5-10.0) than the free enzyme, and the maximum rate of reaction (Vmax) and the turnover number (kcat) of the enzyme increased to 0.01 mM min-1 and 169 min-1, respectively, according to the enzyme-kinetics measurements. The EreB@modified palygorskite maintained about 45% of its activity after 10 cycles, and degraded erythromycin in polluted water to 20 mg L-1 within 300 min. These results indicate that EreB could serve as an effective immobilizing carrier for erythromycin degradation at the industrial scale.


Assuntos
Hidrolases de Éster Carboxílico , Enzimas Imobilizadas , Eritromicina , Hidrolases de Éster Carboxílico/química , Ecossistema , Eritromicina/química , Humanos , Concentração de Íons de Hidrogênio , Compostos de Magnésio/química , Compostos de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA