RESUMO
Physical resource allocation strategy is a key factor affecting the performance of a mobile ad hoc network (MANET), which serves as a network model widely used in the sensor and detection field. For various perceived service information, it is significant for the allocation strategy to adapt to the dynamic service requirements and prioritize resource access for the service information with high priority to guarantee its real-time performance. In this paper, a novel dynamic time division multiple access (TDMA) scheduling strategy is proposed for MANETs. Firstly, a service priority-based dynamic TDMA scheduling (SP-DS) algorithm is presented, which introduces the service priority as a reference factor for slot allocation and fully considers the transmission throughput and end-to-end delay performance. Moreover, for improving the slot use of the whole system, a modified distributed color constraint heuristic (MD-CCH) scheme is presented to optimize the frame structure. The SP-DS and MD-CCH algorithms are combined to form the novel strategy. Simulation results have demonstrated that the proposed strategy has better performance in the slot use, slot allocation efficiency, end-to-end delay and transmission throughput compared with the existing slot allocation algorithms.
RESUMO
In recent years, an increasing number of studies have focused on exploring the principles and mechanisms underlying the emergence of collective intelligence in biological populations, aiming to provide insights for human society and the engineering field. Pigeon flock behavior garners significant attention as a subject of study. Collective homing flight is a commonly observed behavioral pattern in pigeon flocks. The study analyzes GPS data during the homing process and utilizes acceleration information, which better reflects the flock's movement tendencies during turns, to describe the leadership relationships within the group. By examining the evolution of acceleration during turning, the study unveils a dynamic leadership mechanism before and after turns, employing a more intricate dynamic model to depict the flock's motion. Specifically, during stable flight, pigeon flocks tend to rely on fixed leaders to guide homing flight, whereas during turns, individuals positioned in the direction of the flock's turn experience a notable increase in their leadership status. These findings suggest the existence of a dynamic leadership mechanism within pigeon flocks, enabling adaptability and stability under diverse flight conditions. From an engineering perspective, this leadership mechanism may offer novel insights for coordinating industrial multi-robot systems and controlling drone formations.
RESUMO
For the sake of accomplishing the rapidity, safety and consistency of obstacle avoidance for a large-scale unmanned aerial vehicle (UAV) swarm in a dynamic and unknown 3D environment, this paper proposes a flocking control algorithm that mimics the behavior of starlings. By analyzing the orderly and rapid obstacle avoidance behavior of a starling flock, a motion model inspired by a flock of starlings is built, which contains three kinds of motion patterns, including the collective pattern, evasion pattern and local-following pattern. Then, the behavior patterns of the flock of starlings are mapped on a fixed-wing UAV swarm to improve the ability of obstacle avoidance. The key contribution of this paper is collective and collision-free motion planning for UAV swarms in unknown 3D environments with dynamic obstacles. Numerous simulations are conducted in different scenarios and the results demonstrate that the proposed algorithm improves the speed, order and safety of the UAV swarm when avoiding obstacles.
RESUMO
Transmissible gastroenteritis virus (TGEV) infection can lead to mitochondrial damage in porcine intestinal epithelial cells-jejunum 2 (IPEC-J2) cell line. The abnormal opening of mitochondrial permeability transition pore (mPTP) is the most important factor for mitochondrial damage. We previously demonstrated that circEZH2 could inhibit the abnormal opening of mPTP by binding miR-22. However, circEZH2 binding to miR-22 cannot completely enable mPTP opening to recover to normal level compared with the control group. So, we assume that circEZH2 also regulates the mPTP opening in other ways. To prove it, we identified the differentially expressed proteins (DEPs) caused by circEZH2 and circEZH2-interacting proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). It turns out there are 123 DEPs (0.83 ≤ fold change ≥ 1.2) upon overexpression circEZH2 and 200 proteins interacted with circEZH2. The kyoto encyclopedia of genes and genomes (KEGG) analysis, gene ontology (GO) analysis, subcellular localization analysis, and protein interaction network results show that the DEPs and circEZH2-interacting proteins may involve in the regulation of mPTP opening. RNA immunoprecipitation (RIP) assay and flow cytometry (FCM) results indicate that circEZH2 can inhibit the opening of mPTP by interacting with Pi carrier (PiC, also named SLC25A3). Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and FCM results reveal that circEZH2 can inhibit mPTP opening by promoting the expression of radical s-adenosyl methionine domain-containing protein 2 (RSAD2). In addition, PiC can promote RSAD2 expression. The data indicate that circEZH2 inhibits TGEV-induced mPTP opening by interacting with PiC and upregulating RSAD2.
Assuntos
MicroRNAs , Vírus da Gastroenterite Transmissível , Animais , Cromatografia Líquida/veterinária , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Suínos , Espectrometria de Massas em Tandem/veterinária , Vírus da Gastroenterite Transmissível/metabolismoRESUMO
Liver is the place where cholesterol is synthesized, transported, secreted, and transformed, thus liver takes an irreplaceable role in cholesterol homeostasis. Hepatic cholesterol metabolism differs between breeds, yet the molecular mechanism is unclear. In this study Large White (LW) and Erhualian (EHL) piglets (at birth and 25-day-old) were used, 6 each time point per breed. Erhualian piglets had significantly lower body and liver weight compared with Large White at birth and weaning, but the liver/ body weight ratio was higher at weaning, associated with increased serum and liver cholesterol and triglyceride content. The mRNA expression of Cholesterol-7alpha-hydroxylase (CYP7a1) and Recombinant Acetyl Coenzyme Acetyltransferase 2 (ACAT2) were down-regulated in Erhualian piglets at birth, while hepatic Sterol-regulatory element binding protein 2 (SREBP2) mRNA expression was up-regulated in Erhualian piglets at weaning, as well as SREBP2 protein content, compared with Large White piglets. At birth, the depressed CYP7a1 transcription in Erhualian piglets was associated with decreased Histone H3 (H3) and increased Histone H3 lysine 27 trimethylation (H3K27me3). While the results revealed significant promoter hypermethylation of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) promoter in Erhualian piglets at weaning, together with increased Histone H3 lysine 9 monomethylation (H3K9me1) and Histone H3 lysine 4 trimethylation (H3K4me3). These results suggest that epigenetic modification may be an important mechanism in hepatic cholesterol metabolism among different species, which is vital for maintaining cholesterol homeostasis and decreasing risk of cardiovascular disease.
RESUMO
This paper presents a novel neural network adaptive sliding mode control (NNASMC) method to design the dynamic control system for an omnidirectional vehicle. The omnidirectional vehicle is equipped with four Mecanum wheels that are actuated by separate motors, and thus has the omnidirectional mobility and excellent athletic ability in a narrow space. Considering various uncertainties and unknown external disturbances, kinematic and dynamic models of the omnidirectional vehicle are established. The inner-loop controller is designed based the sliding mode control (SMC) method, while the out-loop controller uses the proportion integral derivative (PID) method. In order to achieve the stable and robust performance, the artificial neural network (ANN) based adaptive law is introduced to model and estimated the various uncertainties disturbances. Stability and robustness of the proposed control method are analyzed using the Lyapunov theory. The performance of the proposed NNASMC method is verified and compared with the classical PID controller and SMC controller through both the computer simulation and the platform experiment. Results validate the effectiveness and robustness of the NNASMC method in presence of uncertainties and unknown external disturbances.
RESUMO
When encountering a hostile particle, the avoidance behaviors of the vortex state of self-propelled particles exhibit phase transition phenomena such that the vortex state can change into a crystal state. Based on the self-propelled particle model and a molecular dynamics simulation, the dynamic response of the vortex swarm induced by a hostile particle (predator or obstacle) is studied. Three parameters are defined to characterize the collective escaping behaviors, including the order parameter, the flock size, and the roundness parameter. If a predator moves slower with a larger risk radius, the vortex swarm cannot return to its original vortex state, but rather transforms into a crystal state. The critical phase transition radius, the maximum risk radius of a predator with which the transition from a vortex to crystal state cannot take place, is also examined by considering the influence of the model parameters. To some degree, the critical radius reflects the stability and robustness of the vortex swarm.