Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 8937-8949, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571139

RESUMO

In this study, PbS/Er co-doped fibers (PEDFs) were fabricated by atomic layer deposition (ALD) combined with modified chemical vapor deposition (MCVD). A pumping scheme based on two-photon absorption at 1310 nm of PEDF is proposed for L + band amplification. Through the theoretical analysis, the local environment of Er3+ is changed due to the co-doping of PbS, which improves the two-photon absorption efficiency near 1300 nm. Compared with the 980 nm pump, the PEDFs excited by the 1310 nm pump show better amplification performance in the L + band. And in a bi-directional pumping system, PEDF achieves over 22 dB of gain in the whole L band. In particular, the bandwidth of over 20 dB gain was extended to 1627 nm with a noise figure as low as 4.9 dB. To the best of our knowledge, this is the first time that a high-gain bandwidth of L band amplification has been extended to 1627 nm. The results of unsaturated loss also show that PbS co-doping improves the two-photon absorption efficiency of PEDF to broaden the amplification bandwidth of L + band. These results demonstrate that an effective L + band amplification method is practically provided for future ultra-wideband optical communications.

2.
Opt Lett ; 49(11): 3234-3237, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824371

RESUMO

We demonstrate a milli-Newton mechanical force sensor based on a whispering gallery mode microbottle resonator (MBR). A lever model is established by coupling the MBR with a tapered fiber, whose ratio of load arm to effort arm (RLE) is flexibly adjusted to enlarge the detection range. The mechanical force is induced by attaching a capillary on the MBR stem and applying the downward displacement, which deforms the MBR's radius and thus shifts the resonance wavelength. The dependence of the capillary displacement on the mechanical force is theoretically deduced and verified. Experimentally, the sensors with different RLEs are built, and the maximum sensitivity of -10.48 pm/mN with a resolution of 40 µN is obtained. The achieved detection range is 0-4 mN, which depends on the capillary displacement and RLE of the lever. With the merits of easy fabrication and flexible structure, the proposed sensor shows great potential in biomedical and structural health monitoring.

3.
Opt Express ; 31(15): 23754-23767, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475219

RESUMO

The interlayer distance optimized for low-loss and low-crosstalk double-layer polymer optical waveguides was investigated to enhance their transmission performance. Simulations were conducted to determine the minimal interlayer distances for double-layer optical waveguides with different core sizes. An optimal interlayer distance of 24 µm was identified for a 20 µm × 20 µm double-layer waveguide, which ensured interlayer crosstalk below -30 dB when roughness remained under 80 nm. The double-layer waveguides were fabricated employing ultraviolet lithography combined with the overlay alignment method. Based on experimental optimization, the important fabrication parameters were optimized, such as a plasma treatment time of 10 s, a core exposure dose of 500 mJ/cm2, and a cladding exposure dose of 240 mJ/cm2. Additionally, the fabricated double-layer waveguides, with an interlayer distance of 24.5 µm, exhibited low transmission losses of less than 0.25 dB/cm at 850 nm and 0.40 dB/cm at 1310 nm, respectively. The low interlayer crosstalk values were less than -52 dB at 850 nm and -60 dB at 1310 nm, respectively. The agreement between the experimental results and the simulation findings indicates that this method offers a promising approach for fabricating double-layer waveguides with good performances.

4.
Opt Express ; 31(4): 5951-5962, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823864

RESUMO

Throughout the development of single frequency fiber lasers (SFFLs), gain fiber is one of the most important components, which can greatly affect the quality of SFFLs. Here, we fabricated an Er: YAG crystal-derived silica fiber (EYDSF) using a CO2 laser-heating drawing technique, with a high gain coefficient of 1.74 dB/cm. Employing the EYDSF of only 10 cm as a gain medium, we constructed a continuous-wave ring-cavity SFFL with an all-fiber system. An ultra-narrow linewidth <660 Hz was achieved harnessing a homemade low-concentration Er-doped silica fiber as a saturable absorber. Importantly, the SFFL output power was up to 32.7 mW at 1560 nm. What's more, no multi longitudinal mode or mode hopping were found in 2 hours, and the fluctuation of power was <0.63% in 8 hours. Furthermore, the relative intensity noise was lower to -145 dB/Hz at frequencies over 1 MHz. The results indicate that the ring-cavity SFFL has desirable performance in output power, linewidth, stability and noise, which serves a prospective candidate applied to coherent optical communications, high-precision sensors, laser radars and other advanced fields.

5.
Opt Lett ; 48(2): 251-254, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638430

RESUMO

To efficiently restore the vibration signals of a phase-sensitive optical time domain reflectometer (Φ-OTDR), the GF-FastICA joint algorithm is proposed, which combines guided filtering with fast independent component analysis (FastICA). The marked region of vibration is precisely located by guided filtering. FastICA deals with the optimal phase mixing matrix of the marked region to separate the vibration signals from the noise-containing phase signals. The experimental results show that the GF-FastICA achieves a correlation coefficient of 0.998 for 5-Hz vibration signal recovery from a 14.3-km sensing fiber, verifying the potency of the algorithm. Compared with the traditional method and FastICA only, GF-FastICA improves the root mean square error (RMSE) metric by an order of magnitude, which is approaching an experience value of 10-3.


Assuntos
Processamento de Sinais Assistido por Computador , Vibração , Algoritmos
6.
Br J Anaesth ; 130(2): e370-e380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35778276

RESUMO

BACKGROUND: Peripheral surgical trauma can trigger neuroinflammation and ensuing neurological complications, such as delirium. The mechanisms whereby surgery contributes to postoperative neuroinflammation remain unclear and without effective therapies. Here, we developed a microfluidic-assisted blood-brain barrier (BBB) device and tested the effects of omega-3 fatty acids on neuroimmune interactions after orthopaedic surgery. METHODS: A microfluidic-assisted BBB device was established using primary human cells. Tight junction proteins, vascular cell adhesion molecule 1 (VCAM-1), BBB permeability, and astrocytic networks were assessed after stimulation with interleukin (IL)-1ß and in the presence or absence of a clinically available omega-3 fatty acid emulsion (Omegaven®; Fresenius Kabi, Bad Homburg, Germany). Mice were treated 1 h before orthopaedic surgery with 10 µl g-1 body weight of omega-3 fatty acid emulsion i.v. or equal volumes of saline. Changes in pericytes, perivascular macrophages, BBB opening, microglial activation, and inattention were evaluated. RESULTS: Omega-3 fatty acids protected barrier permeability, endothelial tight junctions, and VCAM-1 after exposure to IL-1ß in the BBB model. In vivo studies confirmed that omega-3 fatty acid treatment inhibited surgery-induced BBB impairment, microglial activation, and delirium-like behaviour. We identified a novel role for pericyte loss and perivascular macrophage activation in mice after surgery, which were rescued by prophylaxis with i.v. omega-3 fatty acids. CONCLUSIONS: We present a new approach to study neuroimmune interactions relevant to perioperative recovery using a microphysiological BBB platform. Changes in barrier function, including dysregulation of pericytes and perivascular macrophages, provide new targets to reduce postoperative delirium.


Assuntos
Delírio do Despertar , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Barreira Hematoencefálica/metabolismo , Doenças Neuroinflamatórias , Emulsões/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo
7.
Appl Opt ; 62(13): 3275-3283, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132827

RESUMO

In order to efficiently select the optimal cutting position of x-ray mono-capillary lenses, an improved sine cosine algorithm-crow search algorithm (SCA-CSA) algorithm is proposed, which combines the sine cosine algorithm with the crow search algorithm, with further enhancements. The fabricated capillary profile is measured using an optical profiler; then the surface figure error for interest regions of the mono-capillary can be evaluated using the improved SCA-CSA algorithm. The experimental results indicate that the surface figure error in the final capillary cut region is about 0.138 µm, and the runtime is 2.284 s. When compared with the traditional metaheuristic algorithm, the particle swarm optimization algorithm, the improved SCA-CSA algorithm, enhances the surface figure error metric by two orders of magnitude. Furthermore, the standard deviation index of the surface figure error metric for 30 runs also improves by more than 10 orders of magnitude, demonstrating the superior performance and robustness of the algorithm. The proposed method provides significant support for the development of precise cuttings of mono-capillaries.

8.
Appl Opt ; 62(35): 9326-9333, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108704

RESUMO

To enhance the capability of phase-sensitive optical time domain reflectometers (Φ-OTDR) to recognize disturbance events, an improved adaptive feature extraction method based on NMF-MFCC is proposed, which replaces the fixed filter bank used in the traditional method to extract the mel-frequency cepstral coefficient (MFCC) features by a spectral structure obtained from the Φ-OTDR signal spectrum using nonnegative matrix factorization (NMF). Three typical events on fences are set as recognition targets in our experiments, and the results show that the NMF-MFCC features have higher distinguishability, with the corresponding recognition accuracy reaching 98.47%, which is 7% higher than that using the traditional MFCC features.

9.
Appl Opt ; 62(25): 6809-6815, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706815

RESUMO

An extrinsic fiber optic Fabry-Perot interferometric (EFPI) ultrasonic sensor based on a grooved silicon diaphragm for partial discharge (PD) detection has been proposed. The size of the groove is determined by finite element simulation, which allows the resonant frequency of the sensor to meet the requirements of PD ultrasonic detection and improves the sensitivity of the sensor by 5.07 times compared with that based on a traditional circular diaphragm. The microelectro-mechanical system process is used to fabricate the diaphragm on a silicon-on-insulator wafer, and the prepared diaphragm has a grooved section with a diameter of 829.34 µm and a thickness of only 2.09 µm. At its resonant frequency of 61.5 kHz, the acoustic pressure sensitivity of the sensor is 172.42 mV/Pa. The ultrasonic signal detection capability of the sensor is verified in the PD experiment. Furthermore, the characteristics of the corona discharge are successfully manifested based on the ultrasonic waves detected by the EFPI sensor. It is demonstrated that the proposed sensor is suitable for PD detection due to its high sensitivity, simple production process, and good resistance to environmental interference.

10.
Opt Express ; 30(16): 28492-28505, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299043

RESUMO

In this paper, we present an efficient polymer two-mode (de)multiplexer with two cascaded horizontal waveguide asymmetric directional couplers (ADCs). Through extensive simulations, the optimized waveguide core dimensions were determined, and the distance L from the starting position of the first ADC to the cascaded position was 35300 µm. With the cascaded ADCs, the E21x mode of the wider waveguide was coupled into the E11x mode of the narrower waveguide with a coupling ratio of 96.73% at 1550 nm when the separation between the waveguide cores was 5 µm. The coupling ratio and extinction ratio of the fabricated (de)multiplexer reached a maximum of 96.12% and 14.21 dB at 1540 nm, respectively. The coupling ratios were greater than 90% in the wavelength range 1533-1565 nm with a minimum insertion loss of 9.75 dB. The influence of different cascaded positions on the mode coupling ratio, mainly caused by the large phase difference between the modes owing to the slowly varying envelope approximation, is analyzed theoretically and verified experimentally. The proposed cascaded two-mode (de)multiplexer can reduce the preparation process requirements and increase the channel capacity of optical communication systems.

11.
Opt Express ; 30(3): 3632-3644, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209617

RESUMO

A compact and efficient polymer three-mode (de)multiplexer with two cascaded waveguide directional couplers fabricated on the same substrate along the horizontal direction is proposed. Three waveguides formed two couplers, where two narrower waveguides were placed on either side of the central waveguide. By optimizing the core height and width, the two couplers can ensure that the E11x mode of the two narrower waveguides are highly coupled into the E21x and E31x modes of the central waveguide at a wavelength of 1310 nm. The structural size of the fabricated three-mode (de)multiplexer using ultraviolet (UV) lithography technology is in agreement with the designed value. The fabricated device, which is 35 mm long, exhibits coupling ratios of 98.07% and 95.43% for the two couplers, respectively. The insertion losses of the three waveguides are 5.23 dB, 8.58 dB, and 14.39 dB, respectively. The device can achieve the multiplexing of three modes in two dimensions, which can increase the channel capacity of optical communication.

12.
Opt Express ; 30(5): 8248-8256, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299570

RESUMO

We have explored an orbital angular momentum (OAM) amplifier of 10 vortex modes under different-order OAM pump modes, i.e. OAM0, OAM1, and OAM2. The all-fiber amplification system consists of an active few-mode erbium-doped fiber (FM-EDF), a mode selective pump (MSP), and a mode selective signal (MSS). These mode selective components are based on fused-taper mode selective couplers (MSC) under different wavelengths fabricated by a passive ring-core fiber (RCF). Under different-order mode pumps, the OAM amplifier experimentally exhibits mode gains (MGs) above 15 dB for 10 vortex modes with the mode purities only 89%, essentially in line with the simulation results. Especially when the signal-mode profiles are better matched to the pump-mode profiles, i.e. the OAM pumps with the same order as signals, the obtained MGs are all over 20.2 dB and the amplified OAM mode purity is up to 97%; the acquired noise figures (NFs) are <4.9 dB and even the minimum NF is 3.2 dB. The results reveal that the OAM amplifier shows low-NF and high-purity characteristics under configurable pump modes in C-band. The amplified high-order OAM mode could be promising for uses in the long-distance mode division multiplexing (MDM) and in mitigation of the upcoming capacity crunch in optical fiber communication.

13.
Opt Lett ; 47(11): 2766-2769, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648925

RESUMO

We demonstrate a high-sensitivity bidirectional magnetic field sensor based on a packaged optofluidic microbottle resonator (OFMBR) filled with magnetic fluid (MF). The relationship between sensitivity and different wall thicknesses and radial modes of OFMBR is theoretically analyzed. Then the thin-wall OFMBR is fabricated by etching a capillary with the fusion discharge process. The OFMBR and tapered fiber is packaged with a portable and robust coupling configuration. By applying perpendicular or parallel magnetic field directions to the OFMBR, opposite refractive index responses of the MF can be obtained, with resonant wavelengths redshifted or blueshifted as the magnetic field intensity is increased. A magnetic field sensitivity of 98.23 pm/mT can be obtained by using the second-order radial mode when the magnetic field is perpendicular to the packaged OFMBR. When the magnetic field is parallel to the packaged OFMBR, the sensitivity is -304.80 pm/mT by using the third-order radial mode and the detection limit reaches 0.0656 mT. The proposed sensor has the advantages of easy fabrication, high sensitivity, and reliability, showing a great potential in bidirectional magnetic field application.

14.
Respir Res ; 23(1): 165, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733161

RESUMO

BACKGROUND: Asthma is a major cause of morbidity and mortality in humans. The mechanisms of asthma are still not fully understood. Leukocyte-specific protein-1 (LSP-1) regulates neutrophil migration during acute lung inflammation. However, its role in asthma remains unknown. METHODS: An OVA-induced mouse asthma model in LSP1-deficient (Lsp1-/-) and wild-type (WT) 129/SvJ mice were used to test the hypothesis that the absence of LSP1 would inhibit airway hyperresponsiveness and lung inflammation. RESULTS: Light and electron microscopic immunocytochemistry and Western blotting showed that, compared with normal healthy lungs, the levels of LSP1 were increased in lungs of OVA-asthmatic mice. Compared to Lsp1-/- OVA mice, WT OVA mice had higher levels of leukocytes in broncho-alveolar lavage fluid and in the lung tissues (P < 0.05). The levels of OVA-specific IgE but not IgA and IgG1 in the serum of WT OVA mice was higher than that of Lsp1-/- OVA mice (P < 0.05). Deficiency of LSP1 significantly reduced the levels of IL-4, IL-5, IL-6, IL-13, and CXCL1 (P < 0.05) but not total proteins in broncho-alveolar lavage fluid in asthmatic mice. The airway hyper-responsiveness to methacholine in Lsp1-/- OVA mice was improved compared to WT OVA mice (P < 0.05). Histology revealed more inflammation (inflammatory cells, and airway and blood vessel wall thickening) in the lungs of WT OVA mice than in those of Lsp1-/- OVA mice. Finally, immunohistology showed localization of LSP1 protein in normal and asthmatic human lungs especially associated with the vascular endothelium and neutrophils. CONCLUSION: These data show that LSP1 deficiency reduces airway hyper-responsiveness and lung inflammation, including leukocyte recruitment and cytokine expression, in a mouse model of asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Animais , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Ovalbumina/toxicidade , Hipersensibilidade Respiratória/metabolismo
15.
Appl Opt ; 61(22): 6609-6616, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255887

RESUMO

We demonstrate a disturbance event recognition method based on region segmentation, which utilizes differential phase signals of a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) to recognize disturbance events efficiently. The long-haul sensing fiber is divided into subsensing regions; whereas the phase signals at the two end points of the subsensing regions are subtracted, unwrapped, and differenced to represent the disturbance information. Feature extraction and classification are performed separately on the subsensing regions datasets. The experimental results indicate that the average recognition accuracy of the region-segmentation-based event recognition method is up to 92.9%. Compared to the method without region segmentation, this proposed method improves the average recognition accuracy by 8%; whereas the recognition time of three disturbance events on a 14.8-km sensing system is only 0.39 s. The proposed method provides significant support for the development of disturbance event recognition of the ϕ-OTDR sensor system.

16.
Opt Express ; 29(9): 13288-13301, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985066

RESUMO

Based on gray-tone optical lithography technology combined with the overlay alignment method, a spherical concave micro-mirror is fabricated at the end of a rectangular optical waveguide (ROW) for low vertical coupling loss. The optimal structures of the spherical concave micro-mirrors were designed through ray-tracing simulation. The results indicate that the minimal vertical coupling loss is only 1.02 dB for the ROW core size of 20 µm × 20 µm. The surface roughness of the micro-mirror is considered, and it should be less than 106 nm to ensure that the vertical coupling loss is less than 1.5 dB. The radius of the fabricated spherical concave micro-mirror was measured as 263.3 µm and the surface roughness of the micro-mirror is 29.19 nm. The vertical coupling loss induced by the micro-mirror was measured as 1.39 dB. 1-dB tolerances in the direction of x-, y-, and z-axes are calculated to be ± 6.9 µm, ± 6.3 µm, and 46.2 µm, respectively.

17.
Opt Express ; 29(14): 21252-21261, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265915

RESUMO

We propose and demonstrate a half-circle interferometer using a hollow glass microsphere (HGM) resonator. The half-circle interference is induced by a mismatch between the fundamental mode in the HGM and the modes in the capillary wall. The theoretical model is verified by comparing the simulated and experimental results. The variation in capillary length induced by the axial pressure contributes the most to the half-circle interference, which features a device with a high hydrostatic pressure sensitivity of -1.099 nm/kPa. This device shows potential as a hydrostatic pressure sensor owing to its stability, high sensitivity, and robustness.

18.
Opt Express ; 29(17): 27938-27950, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615198

RESUMO

The coexistence of transmission mechanisms, including Fabry-Perot (FP), Mach-Zehnder (MZ), and anti-resonant (AR), is demonstrated via a silica capillary-based cascaded structure. The analysis for MZ shows that one pathway is formed by the beam refracted into the silica capillary cladding from the air core, rather than being transmitted into the cladding directly at the splicing interface. Using the ray optics method, the two coexistence conditions are derived for FP and MZ, and for FP, MZ and AR, respectively. The existence percentages of the three mechanisms can be obtained using the fast Fourier transform. Finally, the coexistence of multiple transmission mechanisms is applied for independent multi-parameter sensing with the FP-based temperature sensitivity of 10.0 pm/°C and AR-based strain sensitivity of 1.33 nm/N. The third mechanism MZ interference can assist in verifying changes in both the temperature and axial strain. This shows the possibility to optimize the transmission spectra for independent multi-parameter sensing by tailoring the existence percentages of different mechanisms.

19.
Opt Express ; 29(20): 32208-32219, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615297

RESUMO

A simple and compact magnetic field and temperature dual-parameter sensor is proposed, which is based on a sandwich structure consisting of a section of hollow core Bragg fiber (HCBF) filled with magnetic fluid (MF) and two sections of single-mode fiber (SMF). The corresponding relationship between the resonant dip with different periods in the transmission spectrum and specific anti-resonant (AR) mode in the HCBF is determined. The resonant dips based on different AR modes shift differently when the magnetic field intensity and temperature change. Then, the simultaneous measurement of the magnetic field intensity and temperature can be achieved by utilizing a cross matrix. The experimental results show that the maximum magnetic field sensitivity in the range of 0-12 mT is 86.43 pm/mT, and the maximum temperature sensitivity in the range of 20-60 ℃ is 17.8 pm/℃. The proposed sensor has the advantages of compact structure, easy fabrication and low cost, thus, it has great potential applications in the field of simultaneous sensing of magnetic field intensity and temperature in complex environments.

20.
Opt Express ; 29(21): 34577-34589, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809244

RESUMO

The magneto-refractive properties of an erbium-doped fiber (EDF) are investigated by theoretically analyzing the change in mode characteristics with a magnetic field and experimentally measuring it based on a fiber-optic Mach-Zehnder interferometer (MZI). The numerical results indicate that the mode effective refractive index (RI) increases as the magnetic field increases, and the mode field intensity distribution tends to be more concentrated in the core region with an increasing magnetic field. The variation in the mode effective RI of the fundamental mode with the magnetic field is greater than that of the higher-order modes. A magneto-refractive measurement system based on a fiber-optic MZI is set up to analyze the magneto-refractive effect of the EDF. The changes in the mode effective RI measured with a direct-current (DC) magnetic field and with a 100 Hz alternating-current (AC) magnetic field are 4.838×10-6 and 4.245×10-6 RIU/mT, respectively. The experimental results are in reasonable agreement with the theoretical analysis. Furthermore, the error between the experimental and numerical results is discussed. The magneto-refractive properties of the EDF exhibit potential in all-fiber magnetic field or current sensing area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA