Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 187(18): 4996-5009.e14, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996527

RESUMO

Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.


Assuntos
Herpesvirus Humano 4 , Proteínas da Matriz Viral , Humanos , Microscopia Crioeletrônica , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Células HEK293 , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Modelos Moleculares , Mutação , Multimerização Proteica , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
2.
Nature ; 612(7938): 170-176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265513

RESUMO

Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.


Assuntos
Microscopia Crioeletrônica , Fosfatos de Dinucleosídeos , Antagonistas do Ácido Fólico , Ácido Fólico , Nucleotídeos Cíclicos , Animais , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura
3.
J Immunol ; 212(11): 1782-1790, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629901

RESUMO

Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.


Assuntos
Células Dendríticas , Enterovirus Humano A , Interferon-alfa , Proteínas de Membrana Lisossomal , Glicoproteínas de Membrana , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Enterovirus Humano A/imunologia , Enterovirus Humano A/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/imunologia , Interferon-alfa/metabolismo , Interferon-alfa/imunologia , Receptores Depuradores/metabolismo , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Replicação Viral
4.
Proc Natl Acad Sci U S A ; 120(12): e2218825120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917666

RESUMO

Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Humanos , Adenosina Trifosfatases/metabolismo , Gammaherpesvirinae/genética , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/genética , Replicação Viral
5.
J Environ Manage ; 370: 122896, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39423612

RESUMO

Mineral and organic fertilizers as well as microbial inoculations are crucial to maintain and to improve soil health and quality, ecosystem functions, and fruit yield in Camellia oleifera plantations. However, how these fertilizers shape the life strategies and functions of microbial communities in soil is unclear. Here, we conducted a one-year field experiment with three types of fertilizers: mineral (NPK), manure (Man), and microbial (MicrF), and analyzed soil properties, bacterial and fungal communities to assess microbial life strategies, functional traits and their determinants. The application of MicrF strongly increased the diversity of both soil bacterial (by 6.4%) and fungal communities (by 23%). Organic matter inputs from Man and MicrF had greater effects on the life strategies of bacteria than fungi: the dominant r-strategy bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased with Man and MicrF, but K-strategists (Acidobacteria) decreased. Conversely, the abundance of r-strategy fungi (Ascomycota) decreased, but that of K-fungi (Basidiomycota) increased. Predictions of the functions indicated that microbial fertilization accelerated the bacterial carbohydrates, carbon and nitrogen metabolism, while also increasing the prevalence of wood saprotrophic fungi. The changes in the taxonomic and functional characteristics of the microbial communities induced priming effects by co-metabolism, which were mainly regulated by contents of soil organic carbon, available phosphorus, and ammonium nitrogen, as well as carbon to nitrogen ratio. The application of MicrF is an effective approach to increase the diversity and multifunctionality of soil microbial communities in Camellia oleifera plantations, including organic matter decomposition, carbon and nitrogen metabolism. These findings provide valuable insights into the fertilizer regimes based on microbial ecological strategies and functional profiles in Camellia oleifera plantations.

6.
Environ Sci Technol ; 57(36): 13356-13365, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653579

RESUMO

To understand the nanotoxicity effects on plants, it is necessary to systematically study the distribution of NPs in vivo. Herein, elemental and particle-imaging techniques were used to unravel the size effects of ZnO NPs on phytotoxicity. Small-sized ZnO NPs (5, 20, and 50 nm) showed an inhibitory effect on the length and biomass of rice (Oryza sativa L.) used as a model plant. ZnO NP nanotoxicity caused rice root cell membrane damage, increased the malondialdehyde content, and activated antioxidant enzymes. As a control, the same dose of Zn2+ salt did not affect the physiological and biochemical indices of rice, suggesting that the toxicity is caused by the entry of the ZnO NPs and not the dissolved Zn2+. Laser ablation inductively coupled plasma optical emission spectroscopy analysis revealed that ZnO NPs accumulated in the rice root vascular tissues of the rhizodermis and procambium. Furthermore, transmission electron microscopy confirmed that the NPs were internalized to the root tissues. These results suggest that ZnO NPs may exist in the rice root system and that their particle size could be a crucial factor in determining toxicity. This study provides evidence of the size-dependent phytotoxicity of ZnO NPs.


Assuntos
Oryza , Óxido de Zinco , Tamanho da Partícula , Óxido de Zinco/toxicidade , Antioxidantes , Biomassa
7.
Environ Sci Technol ; 57(21): 8035-8043, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200099

RESUMO

Microplastics (MPs), as a new persistent pollutant, can be emitted and accumulated in urban environments, but there is no detailed information on the driving factors of MP pollution. In this study, through a large-scale wetland soil survey, the features of MPs were characterized in each urban area. The results showed an average abundance to be 379 n/kg in wetland soil. Polypropylene, fiber or fragment, and black color were common composition, shape, and color, respectively. The spatial distribution information showed that MP abundance was significantly relevant to the distance from the urban economic center. Furthermore, the correlation and regression analysis revealed that MP abundance was related to soil heavy metal and atmospheric particle (PM10 and PM2.5) concentrations (P < 0.05), while the promotion of socioeconomic activities (urbanization level, population density, etc.) may aggravate the pollution degree. Additionally, by using structural equation modeling, it was found that the urbanization level was the dominant factor driving the MP pollution degree, with a total effect coefficient of 0.49. Overall, this work provides multi-sided environmental information regarding MP pollution in urban ecosystems, which is significant for follow-up studies of MP pollution control and restoration.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Áreas Alagadas , Ecossistema , Solo , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
8.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991859

RESUMO

Three-axis atomic magnetometers have great advantages for interpreting information conveyed by magnetic fields. Here, we demonstrate a compact construction of a three-axis vector atomic magnetometer. The magnetometer is operated with a single laser beam and with a specially designed triangular 87Rb vapor cell (side length is 5 mm). The ability of three-axis measurement is realized by reflecting the light beam in the cell chamber under high pressure, so that the atoms before and after reflection are polarized along two different directions. It achieves a sensitivity of 40 fT/Hz in x-axis, 20 fT/Hz in y-axis, and 30 fT/Hz in z-axis under spin-exchange relaxation-free regime. The crosstalk effect between different axes is proven to be little in this configuration. The sensor configuration here is expected to form further values, especially for vector biomagnetism measurement, clinical diagnosis, and field source reconstruction.

9.
Ecotoxicol Environ Saf ; 246: 114194, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252513

RESUMO

The potential toxicity of microplastic (MPs) to organisms has attracted extensive attention. However, due to the subacute toxicity of MPs, the biological effect is hard to verify in short-term exposure experiment. Here, by tracking the dynamics of gut microbes, mice model was utilized to evaluate the toxicity of compositional MPs (PE, PET, PP, PS and PVC). After 7 days digestive exposure, the physiological indicators were normal as the control group that the body weight and serum cholesterol levels were insignificant change. Whereas, through histopathological examination, all the treatment groups suffered colon tissue damage, among which PS had the most inflammatory cells. Moreover, the high-throughput sequencing results revealed great variation of intestinal flora in treated mice. The ratio of Bacteroidetes and Firmicutes in PE, PET and PP treatment groups heighten, and the relative abundance of Ruminococcaceae and Lachnospiraceae increased significantly at family levels. At the genus level, Alistipes bacteria in PS treatment group significantly decreased that is associated with obesity risk. It indicated that MPs induced inflammatory response would further interfere the dynamics of intestinal flora causing health effect in living organisms. This work shed light on MPs toxicity in short-term exposure and supplied research paradigm of MPs health risk assessment.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Camundongos , Animais , Plásticos , Bactérias/genética , Digestão
10.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955761

RESUMO

Deficiency in scavenger receptor class B, member 2 (SCARB2) is related to both Gaucher disease (GD) and Parkinson's disease (PD), which are both neurodegenerative-related diseases without cure. Although both diseases lead to weight loss, which affects the quality of life and the progress of diseases, the underlying molecular mechanism is still unclear. In this study, we found that Scarb2-/- mice showed significantly reduced lipid storage in white fat tissues (WAT) compared to WT mice on a regular chow diet. However, the phenotype is independent of heat production, activity, food intake or energy absorption. Furthermore, adipocyte differentiation and cholesterol homeostasis were unaffected. We found that the impaired lipid accumulation of Adiponectin-cre; Scarb2fl/fl mice was due to the imbalance between glycolysis and oxidative phosphorylation (OXPHOS). Mechanistically, the mechanistic target of rapamycin complex 1 (mTORC1)/ eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) pathway was down-regulated in Scarb2 deficient adipocytes, leading to impaired mitochondrial respiration and enhanced glycolysis. Altogether, we reveal the role of SCARB2 in metabolism regulation besides the nervous system, which provides a theoretical basis for weight loss treatment of patients with neurodegenerative diseases.


Assuntos
Antígenos CD36/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Fosforilação Oxidativa , Qualidade de Vida , Animais , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Redução de Peso
11.
J Immunol ; 194(10): 4737-49, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862818

RESUMO

Scavenger receptor class B, member 2 (SCARB2) is essential for endosome biogenesis and reorganization and serves as a receptor for both ß-glucocerebrosidase and enterovirus 71. However, little is known about its function in innate immune cells. In this study, we show that, among human peripheral blood cells, SCARB2 is most highly expressed in plasmacytoid dendritic cells (pDCs), and its expression is further upregulated by CpG oligodeoxynucleotide stimulation. Knockdown of SCARB2 in pDC cell line GEN2.2 dramatically reduces CpG-induced type I IFN production. Detailed studies reveal that SCARB2 localizes in late endosome/lysosome of pDCs, and knockdown of SCARB2 does not affect CpG oligodeoxynucleotide uptake but results in the retention of TLR9 in the endoplasmic reticulum and an impaired nuclear translocation of IFN regulatory factor 7. The IFN-I production by TLR7 ligand stimulation is also impaired by SCARB2 knockdown. However, SCARB2 is not essential for influenza virus or HSV-induced IFN-I production. These findings suggest that SCARB2 regulates TLR9-dependent IFN-I production of pDCs by mediating endosomal translocation of TLR9 and nuclear translocation of IFN regulatory factor 7.


Assuntos
Células Dendríticas/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Proteínas de Membrana Lisossomal/imunologia , Receptores Depuradores/imunologia , Receptor Toll-Like 9/metabolismo , Western Blotting , Células Cultivadas , Células Dendríticas/metabolismo , Endossomos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Transporte Proteico/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Depuradores/metabolismo
12.
Small ; 12(26): 3578-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27244649

RESUMO

Nano-sized in vivo active targeting drug delivery systems have been developed to a high anti-tumor efficacy strategy against certain cancer-cells-specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO-PEG-OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor-mediated tumor-specific targeting delivery. Owing to the high loading efficiency and accurate targeting delivery of anti-cancer drug doxorubicin (DOX), our DOX loaded NGO-PEG-OCT complex offers a remarkably improved cancer-cell-specific cellular uptake, chemo-cytotoxicity, and decreased systemic toxicity compared to free DOX or NGO-PEG. More importantly, due to its strong near-infrared absorption, the NGO-PEG-OCT complex further enhances efficient photothermal ablation of tumors, delivering combined chemo and photothermal therapeutic effect against cancer cells.


Assuntos
Grafite/química , Octreotida/química , Polietilenoglicóis/química , Receptores de Somatostatina/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sobrevivência Celular , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Difusão Dinâmica da Luz , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int Dent J ; 74(5): 1089-1101, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38631944

RESUMO

OBJECTIVES: Investigate the geographical distribution of private dental practices in major Chinese cities and analyze the variables influencing this distribution. METHODS: This study used Python to extract various types of Point of Interest (POI) data spanning from 2016 to 2022 from the AutoNavi map. A 1km*1km grid was constructed to establish the study sample. Additional spatial pattern data, including nighttime lighting, population, and air quality data, were integrated into this grid. Global Moran's I index was used to analyze the spatial autocorrelation. The spatial lag model was used to explore the influencing factors of private dental practice distribution. RESULTS: This study reveals a specific clustering pattern for private dental practices in major Chinese cities. The primary influencing factors include nighttime lights, population density, and housing prices, suggesting that dental practices are typically concentrated in highly developed regions with dense populations and high housing costs. Additionally, we discovered that patterns vary across different metropolises, with the most pronounced clustering patterns and substantial inequalities found in the most developed areas. CONCLUSIONS: This study establishes that factors such as regional development and population density positively correlate with private dental practice. Additionally, it reveals a strong mutual correlation in the clustering of dental practices, which does not show a substantial correlation with public resources. Finally, it suggests that the spatial heterogeneity pattern implies a rising necessity to tackle inequality issues within urban areas as economic development progresses.


Assuntos
Cidades , Clínicas Odontológicas , China , Humanos , Clínicas Odontológicas/estatística & dados numéricos , Análise Espacial , Densidade Demográfica , Fatores Sociodemográficos , Prática Privada/estatística & dados numéricos
14.
Cell Biochem Biophys ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020088

RESUMO

Osteoarthritis (OA) is a common chronic disease with age-associated increase in both incidence and prevalence. The cyclin-dependent kinase 5 (CDK5), which is a member of the CDK family, is involved in many chronic diseases. This study was performed to explore the functional role of CDK5 in OA and to discuss the detailed molecular mechanisms. The expressions of CDK5 and ELF3 before or after transfection were detected with reverse transcription-quantitative PCR (RT-qPCR) and western blot. 5-ethynyl-2'-deoxyuridine (Edu) and terminal deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assays were used to detect the proliferation and apoptosis of C28/I2 cells. The levels of inflammatory cytokines were estimated using enzyme-linked immunosorbent assay (ELISA) while the expressions of proteins implicated in extracellular matrix (ECM) degradation- and apoptosis were detected using western blot. Additionally, the activity of CDK5 promoters and its binding with ELF3 were detected using luciferase activity assay and chromatin immunoprecipitation (CHIP) assay. In the present study, it was discovered that the mRNA and protein expressions of CDK5 were significantly increased in IL-1ß-induced C28/I2 cells. After depleting CDK5 expression, the apoptosis, inflammation and ECM in C28/I2 cells with IL-1ß induction were suppressed. It was also found that ELF3 expression was increased in IL-1ß-induced C28/I2 cells and acted as a transcription factor binding to the CDK5 promoter to regulate its transcriptional expression. The further experiments evidenced that ELF3 overexpression partially reversed the inhibitory effects of CDK5 deficiency on IL-1ß-induced apoptosis, inflammation and ECM in C28/I2 cells. Collectively, CDK5 that upregulated by ELF3 transcription could promote the development of OA.

15.
Micromachines (Basel) ; 15(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39337757

RESUMO

Chip-scale devices harnessing the interaction between hot atomic ensembles and light are pushing the boundaries of precision measurement techniques into unprecedented territory. These advancements enable the realization of super-sensitive, miniaturized sensing instruments for measuring various physical parameters. The evolution of this field is propelled by a suite of sophisticated components, including miniaturized single-mode lasers, microfabricated alkali atom vapor cells, compact coil systems, scaled-down heating systems, and the application of cutting-edge micro-electro-mechanical system (MEMS) technologies. This review delves into the essential technologies needed to develop chip-scale hot atomic devices for quantum metrology, providing a comparative analysis of each technology's features. Concluding with a forward-looking perspective, this review discusses the future potential of chip-scale hot atomic devices and the critical technologies that will drive their advancement.

16.
Front Med (Lausanne) ; 11: 1391545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831987

RESUMO

Objective: The significance of interstitial cells of Cajal (ICC) in the gastrointestinal tract has garnered increasing attention. In recent years, approximately 80 articles on ICC have been published annually in various journals. However, no bibliometric study has specifically focused on the literature related to ICC. Therefore, we conducted a comprehensive bibliometric analysis of ICC to reveal dynamic scientific developments, assisting researchers in exploring hotspots and emerging trends while gaining a global perspective. Methods: We conducted a literature search in the Web of Science Core Collection (WoSCC) from January 1, 2013, to December 31, 2023, to identify relevant literature on ICC. We employed bibliometric software, namely VOSviewer and CiteSpace, to analyze various aspects including annual publication output, collaborations, research hotspots, current status, and development trends in this domain. Results: A total of 891 English papers were published in 359 journals by 928 institutions from 57 countries/regions. According to the keyword analysis of the literature, researchers mainly focused on "c-Kit," "expression," "smooth muscle," and "nitric oxide" related to ICC over the past 11 years. However, with "SIP syncytium," "ANO1," "enteric neurons," "gastrointestinal stromal tumors (GIST)," and "functional dyspepsia (FD)," there has been a growing interest in the relationship between ANO1, SIP syncytium, and ICC, as well as the role of ICC in the treatment of GIST and FD. Conclusion: Bibliometric analysis has revealed the current status of ICC research. The association between ANO1, SIP syncytium, enteric neurons and ICC, as well as the role of ICC in the treatment of GIST versus FD has become the focus of current research. However, further research and collaboration on a global scale are still needed. Our analysis is particularly valuable to researchers in gastroenterology, oncology, and cell biology, providing insights that can guide future research directions.

17.
Sci Total Environ ; 935: 173322, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777072

RESUMO

The swift proliferation of forests converted into monoculture plantations has profound impacts on soil nutrients, microbial communities, and many ecological processes and functions. Nematodes are soil microfauna that play a pivotal role in biogeochemical cycling and in soil food web, whereas the response of soil nematode communities and energy flows to forest conversion remains unknown. Here, we assessed the community composition and the energy flows of the nematode food webs as a function of soil chemistry after conversion from natural forests (Forest) to four plantations (8-year-old): Amygdalus persica (Peach), Myrica rubra (Berry), Camellia oleifera (Oil), and Cunninghamia lanceolata (Fir). After forest conversion, soil organic carbon (SOC) and total nitrogen (TN) contents decreased by 65 % and 55 %, respectively. Forest conversion strongly reduced the abundance (particularly large-bodied omnivorous-predatory nematodes), diversity, maturity, and stability of the soil nematode community. The shifts in composition and structure of nematode communities after forest conversion are reflected in changes in the abundance of predominant genera and trophic taxa, especially bacterivorous, fungivorous, and omnivorous-predatory nematodes. Acrobeloides notably increased, whereas Plectus, Prismatolaimus, Tylencholaimus, and Tripyla decreased. Accordingly, the abundances of r-strategy nematodes (cp value = 1-2) increased, but that of the K-strategists (cp value = 3-5) declined. Additionally, the energy flow across the soil nematode food web was reduced by 36 % and flow uniformity declined by 24 % after forest conversion. These changes in nematode diversity and abundance were triggered by diminishing soil C and N contents, thereby affecting the energy flows via the nematode food webs. Thus, forest conversion affects soil biotas and multi-functions from the perspective of nematode food web structure and energy flows, and underlines the interconnections between ecosystem and energy dynamics across multi-trophic levels, which is crucial for sustainable forest management.


Assuntos
Carbono , Cadeia Alimentar , Florestas , Nematoides , Nitrogênio , Solo , Nematoides/fisiologia , Animais , Solo/química , Nitrogênio/análise , Carbono/análise
18.
Protein Cell ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635907

RESUMO

Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease (GD) and Parkinson's disease (PD). Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.

19.
PM R ; 15(1): 69-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34409777

RESUMO

BACKGROUND: Patient-reported outcomes (PROs) can be used to evaluate perceived capacity of an individual in executing tasks in a natural environment with their prosthetic device. According to the World Health Organization International Classification of Health, Functioning, and Disability (ICF) models, there may be specific factors of a person, factors of assistive prosthetic technology, or factors related to the health condition or body function that affect their functioning and disability. However, an understanding of factors affecting an upper limb prosthesis user's perception of their ability to execute tasks in a natural environment is not well established. OBJECTIVE: To use the ICF model to identify which health condition-related, body function, environmental, and personal factors influence activity as measured by perceived function in the upper limb prosthesis user population. DESIGN: Quantitative clinical descriptive study. SETTING: Clinical offices within outpatient private practice (removed for blinding). PARTICIPANTS: A sample of 101 participants with upper limb amputation who use a prosthetic device and were undergoing a prosthesis fitting process. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: PROs on pain with/without a prosthesis, satisfaction, and perceived function derived from the Comprehensive Arm Prosthesis and Rehabilitation Outcomes Questionnaire. RESULTS: Model coefficients indicate that with a unit increase in satisfaction (p < .001) and pain (p = .031) scores (with higher pain scores signifying less pain), the mean of perceived function increases by 0.66 and 0.47 units, respectively. Conversely, for individuals with elbow disarticulation, transhumeral, shoulder disarticulation, and interscapulothoracic amputations, the mean of perceived function decreases by 22.02 units (p = .006). CONCLUSIONS: Based on our sample, perceived function is significantly associated with satisfaction, pain, and amputation level. These findings could potentially help to inform initial clinical approach and targeted outcomes for patients based on these factors.


Assuntos
Membros Artificiais , Pessoas com Deficiência , Humanos , Amputação Cirúrgica , Dor , Desarticulação , Extremidade Superior
20.
Am J Reprod Immunol ; 89(4): e13678, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648083

RESUMO

PROBLEM: Draining lymph nodes (LNs) are pivotal sites for maintaining tolerance to self-antigens as well as eliciting immune responses to exogenous antigens. The epididymis is a male reproductive organ with a unique local immune environment. Although mice are the most commonly used laboratory animals for immunology research, there are no detailed descriptions of the anatomical location and function of LNs that drain the epididymis. METHOD OF STUDY: Evans blue labeling was utilized to explore lymphatic drainage of the epididymis in eight- to ten-week-old male C57BL/6 mice. We confirmed the lymphatic drainage of the epididymis in mice using the objective technique of carboxyfluorescein succinimidyl ester (CFSE)-labeled cells. RESULTS: By combined Evans blue labeling and fluorescent labeling, we found that 1) the patterns of epididymal LN drainage are highly heterogeneous between individual mice; 2) the leftside LNs participate in drainage more frequently than the right-side LNs; and 3) epididymal lymphatic drainage bypasses both the paraaortic and renal LNs in some mice. CONCLUSIONS: These data highlighted the need to consider the individual variation in and lateral asymmetry of draining LNs when characterizing the regional immunology of the mouse epididymis.


Assuntos
Epididimo , Linfonodos , Camundongos , Masculino , Animais , Azul Evans , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA