Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2217301120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399423

RESUMO

A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Receptores de Antígenos de Linfócitos T , Transdução de Sinais/fisiologia , Fosforilação , Antígenos/metabolismo
2.
Small ; 18(12): e2106196, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322558

RESUMO

Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.


Assuntos
DNA , Microfluídica
3.
Nucleic Acids Res ; 46(1): 350-361, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29145633

RESUMO

CRISPR-Cas9 system has been widely used for efficient genome editing. Although the structures of Cas9 protein in complex with single-guided RNA (sgRNA) and target DNA have been resolved, the molecular details about the formation of Cas9 endonuclease R-loop structure remain elusive. Here we examine the DNA cleavage activities of Streptococcus pyogenes Cas9 (SpyCas9) and its mutants using various target sequences and study the conformational dynamics of R-loop structure during target binding using single-molecule fluorescence energy transfer (smFRET) technique. Our results show that Cas9-sgRNA complex divides the target DNA into several distinct domains: protospacer adjacent motif, linker, Seed, Middle and Tail. After seed pairing, the Cas9 transiently retains a semi-active conformation and induces the cleavage of either target or non-target strand. smFRET studies demonstrate that an intermediate state exists in prior to the formation of the fully stable R-loop complex. Kinetics analysis of this new intermediate state indicates that the lifetime of this state increases when the base-pairing length of guide-DNA hybrid duplex increases and reaches the maximum at the size of 18 bp. These data provide new insights into the process of R-loop formation and reveal the source of off-targeting in CRISPR/Cas9 system.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Clivagem do DNA , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , DNA/química , DNA/genética , DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Homologia de Sequência do Ácido Nucleico , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
4.
Front Cell Dev Biol ; 10: 820562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372359

RESUMO

Purpose: Pituitary adenomas (PAs) are the second most common intracranial neoplasms. Total surgical resection was extremely important for curing PAs, whereas tumor stiffness has gradually become the most critical factor affecting the resection rate in PAs. We aimed to investigate the molecular mechanisms of tumor stiffening and explore novel medications to reduce stiffness for improving surgical remission rates in PA patients. Methods: RNA sequencing, whole-genome bisulfite sequencing, and whole exome sequencing were applied to identify transcriptomic, epigenomic, and genomic underpinnings among 11 soft and 11 stiff PA samples surgically resected from patients at Peking Union Medical College Hospital (PUMCH). GH3 cell line and xenograft PA model was used to demonstrate therapeutic effect of sunitinib, and atomic force microscopy (AFM) was used to detect the stiffness of tumors. Results: Tumor microenvironment analyses and immunofluorescence staining indicated endothelial cells (ECs) and cancer-associated fibroblasts (CAFs) were more abundant in stiff PAs. Weighted gene coexpression network analysis identified the most critical stiffness-related gene (SRG) module, which was highly correlated with stiff phenotype, ECs and CAFs. Functional annotations suggested SRGs might regulate PA stiffness by regulating the development, differentiation, and apoptosis of ECs and CAFs and related molecular pathways. Aberrant DNA methylation and m6A RNA modifications were investigated to play crucial roles in regulating PA stiffness. Somatic mutation analysis revealed increased intratumoral heterogeneity and decreased response to immunotherapy in stiff tumors. Connectivity Map analysis of SRGs and pRRophetic algorithm based on drug sensitivity data of cancer cell lines finally determine sunitinib as a promising agent targeting stiff tumors. Sunitinib inhibited PA growth in vitro and in vivo, and also reduced tumor stiffness in xenograft PA models detected by AFM. Conclusion: This is the first study investigating the underlying mechanisms contributing to the stiffening of PAs, and providing novel insights into medication therapy for stiff PAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA