Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(23): e2311272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366302

RESUMO

Personal protective equipment pays attention exclusively to external safety protection and ignores the internal thermoregulation of physiological state in association with sweating. Herein, a super-hygroscopic calcium-doped poly(sodium 4-styrenesulfonate) and superhydrophobic metal-organic-framework-overlayed wearables (Ca-PSS/MOF) integrated cooling wearable is proposed for special personal thermal management (PTM). Compared to the pristine fabric, the superhydrophobic MOF wearables exhibit anti-fouling and antibacterial capabilities, and the antibacterial efficiency is up to 99.99% and 98.99% against E. coli and S. aureus, respectively. More importantly, Ca-PSS/MOF demonstrate significant heat index changes up to 25.5 °C by reducing relative humidity dramatically from 91.0% to 60.0% and temperature from 36.5 to 31.6 °C during the running test. The practical feasibility of the Ca-PSS/MOF cooling wearables is well proved with the protective suit of the fireman. Owing to these multifunctional merits, the sandwich-structured cooling Ca-PSS/MOF are expected to provide new insights for designing the next-generation multifunctional apparel for PTM.


Assuntos
Estruturas Metalorgânicas , Dispositivos Eletrônicos Vestíveis , Zinco , Zinco/química , Estruturas Metalorgânicas/química , Humanos , Escherichia coli , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Temperatura , Interações Hidrofóbicas e Hidrofílicas
2.
Environ Res ; 250: 118419, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316389

RESUMO

Ferrous iron (Fe2+) reduces the amount of external carbon source used for the denitrification of low-C/N wastewater. The effects of key operating parameters on the efficiency of ferrous-dependent autotrophic denitrification (FDAD) and the functioning mechanism of the microbiome can provide a regulatory strategy for improving the denitrification efficiency of low C/N wastewater. In this study, the response surface method (RSM) was used to explore the influence of four important parameters-the molar ratio of Fe2+ to NO3--N (Fe/N), total organic carbon (TOC), the molar ratio of inorganic carbon to NO3--N (IC/N) and sludge volume (SV, %)-on the FDAD efficiency. Functional prediction and molecular ecological networks based on high-throughputs sequencing techniques were used to explore changes in the structure, function, and biomarkers of the sludge microbial community. The results showed that Fe/N and TOC were the main parameters affecting FDAD efficiency. Higher concentrations of TOC and high Fe/N ratios provided more electron donors and improved denitrification efficiency, but weakened the importance of biomarkers (Rhodanobacter, Thermomonas, Comamonas, Thauera, Geothrix and unclassified genus of family Gallionellaceae) in the sludge ecological network. When Fe/N > 4, the denitrification efficiency fluctuated significantly. Functional prediction results indicated that genes that dominated N2O and NO reduction and the genes that dominated Fe2+ transport showed a slight decrease in abundance at high Fe/N levels. In light of these findings, we recommend the following optimization ranges of parameters: Fe/N (3.5-4); TOC/N (0.36-0.42); IC/N (3.5-4); and SV (approximately 35%).


Assuntos
Processos Autotróficos , Carbono , Desnitrificação , Ferro , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Carbono/metabolismo , Ferro/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Microbiota , Esgotos/microbiologia
3.
BMC Immunol ; 24(1): 53, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087217

RESUMO

Malignant pleural effusion (MPE), which is a complex microenvironment that contains numerous immune and tumour signals, is common in lung cancer. Gene alterations, such as driver gene mutations, are believed to affect the components of tumour immunity in the microenvironment (TIME) of non-small-cell lung cancer. In this study, we have shown that pleural CD39 + CD8 + T cells are selectively elevated in lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFRwt) compared to those with newly diagnosed mutant EGFR (EGFRmu). Furthermore, these CD39 + CD8 + T cells are more prevalent in MPE with acquired resistance to EGFR-tyrosine kinase inhibitors (AR-EGFR-TKIs). Our analysis reveals that pleural CD39 + CD8 + T cells exhibit an exhausted phenotype while still retaining cytolytic function. Additionally, they have a higher T cell receptor (TCR) repertoire clonality compared to CD39-CD8 + T cells, which is a unique characteristic of LUAD-related MPE. Further investigation has shown that TCR-Vß clonality tends to be more enhanced in pleural CD39 + CD8 + T cells from MPE with AR-EGFR-TKIs. In summary, we have identified a subset of CD8 + T cells expressing CD39 in MPE, which may potentially be tumour-reactive CD8 + T cells. This study provides new insights into the dynamic immune composition of the EGFRmu tumour microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patologia , Receptores ErbB/genética , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
4.
Small ; 19(46): e2302886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485809

RESUMO

Eutectic Gallium-Indium (EGaIn) liquid metal is an emerging phase change metal material, but its low phase transition enthalpy and low light absorption limit its application in photothermal phase change energy storage materials (PCMs) field. Here, based on the dipole layer mechanism, stearic acid (STA)-EGaIn-based PCMs which exhibit extraordinary solar-thermal performance and phase change enthalpy are fabricated by ball milling method. The wood lamella-inspired cellulose-derived aerogel and molybdenum disulfide (MoS2 ) are used to support the PCMs by the capillary force and decrease the interfacial thermal resistance. The resulted PCMs achieved excellent photothermal conversion performance and leakage proof. They  have excellent thermal conductivity of 0.31 W m-1 K-1 (this is increased by 138% as compared with pure STA), and high phase change enthalpy of187.50 J g-1 , which is higher than the most of the reported PCMs. Additionally, the thermal management system and infrared stealth materials based on the PCMs are developed. This work provides a new way to fabricate smart EGaIn-based PCMs for energy storage device thermal management and infrared stealth.

5.
Exp Cell Res ; 417(1): 113212, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588796

RESUMO

Malignant pleural effusions (MPE) are a common terminal pathway for many types of cancer, especially non-small cell lung cancer (NSCLC). However, the phenotype and differentiation status of MPE-infiltrating CD8+ T cells have not yet been systematically addressed. In this study, the surface molecules and cytokine secretion of T cells in MPE and peripheral blood (PB) were analyzed using flow cytometry. We found an increased frequency of CD8+ T cells in MPE compared to PB among lung cancer patients, of which the effector memory subset (Tem, CCR7- CD45RA-) and central memory subset (Tcm, CCR7+ CD45RA-) were upregulated. MPE-derived Tem and Tcm subsets expressed more PD1 or CD39, and there was a greater population of cells in these subsets that co-expressed them. In addition, Tem and Tcm cells from MPE had higher cytokine production than terminally differentiated effector memory cells (TemRA, CCR7- CD45RA+) and naïve cells (Tnaive, CCR7+CD45RA+). Our results demonstrate that the Tem and Tcm cells in MPE may have advantages in both tumor reactivity and immune functionality. Altogether, these findings help to characterize the phenotype of MPE-derived CD8+ T cells in terms of differentiation and tumor reactivity and reveal their potential as a target for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Citocinas/metabolismo , Humanos , Memória Imunológica , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Neoplasias Pulmonares/metabolismo , Fenótipo , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patologia , Receptores CCR7/genética , Receptores CCR7/metabolismo , Subpopulações de Linfócitos T
6.
Small ; 18(14): e2107636, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187798

RESUMO

Donning of personal protective equipment (PPE) in the healthcare sector has been intensified by the on-going COVID-19 pandemic around the globe. While extensive PPE provides protection, it typically limits moisture permeability and severely hinders the sweat evaporation process, resulting in greater heat stress on the personnel. Herein, a zinc-poly(vinyl alcohol) (Zn-PVA) composite film is fabricated by embedding a super-hygroscopic zinc-ethanolamine complex (Zn-complex) in the PVA matrix. By attaching the Zn-PVA composite film, the relative humidity (RH) inside the protective suit decreases from 91.0% to 48.2%. The reduced RH level, in turn, enhances evaporative cooling, hence bringing down the heat index from 64.6 to 40.0 °C at an air temperature of 35 °C, remarkably lowering the likelihood of heat stroke. The American Society for Testing and Materials tests conducted on a sweating manikin have also proven that the Zn-PVA composite films can significantly reduce the evaporative resistance of the protective suit by 90%. The low material cost, facile fabrication process, and reusability allow the Zn-PVA composition films to be readily available for healthcare workers worldwide. This application can be further extended to other occupations that are facing severe thermal discomfort and heat stress.


Assuntos
COVID-19 , Sudorese , COVID-19/prevenção & controle , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Pandemias , Suor , Zinco
7.
New Phytol ; 233(1): 373-389, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34255862

RESUMO

Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Proteínas de Plantas/metabolismo , Transcriptoma/genética
8.
New Phytol ; 227(2): 485-497, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181875

RESUMO

Polycomb group (PcG) proteins play vital roles in plant development via epigenetically repressing the transcription of target genes. However, to date, their function in fruit ripening is largely unknown. Combining reverse genetic approaches, physiological methods, yeast two-hybrid, co-immunoprecipitation, and chromatin immunoprecipitation assays, we show that Like Heterochromatin Protein 1b (SlLHP1b), a tomato Polycomb Repressive Complex 1 (PRC1)-like protein with a ripening-related expression pattern, represses fruit ripening via colocalization with epigenetic mark H3K27me3. RNA interference (RNAi)-mediated downregulation of SlLHP1b advanced ripening initiation, climacteric ethylene production, and fruit softening, whereas SlLHP1b overexpression delayed these events. Ripening-related genes were significantly upregulated in SlLHP1b RNAi fruits and downregulated in overexpressing fruits compared with wild-type. Furthermore, SlLHP1b protein interacts with ripening regulator MSI1, a subunit of the PRC2 complex. Moreover, SlLHP1b also binds the epigenetic histone mark H3K27me3 in vivo and chromatin immunoprecipitation-quantitative PCR results showed binding occurs preferentially to regions of ripening-associated chromatin marked by histone H3K27me3. Furthermore, the H3K27me3 levels in chromatin of ripening-related genes is negatively correlated with accumulation of their transcripts in SlLHP1b down or upregulated fruits during ripening. Our findings reveal a novel regulatory function of SlLHP1b in fruit and provide new insights into the PcG-mediated epigenetic regulation of climacteric fruit ripening.


Assuntos
Solanum lycopersicum , Epigênese Genética , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Heterocromatina/genética , Histonas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
9.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028643

RESUMO

Tubby-like proteins (TLPs), which were firstly identified in obese mice, play important roles in male gametophyte development, biotic stress response, and abiotic stress responses in plants. To date, the role of TLP genes in fruit ripening is largely unknown. Here, through a bioinformatics analysis, we identified 11 TLPs which can be divided into three subgroups in tomato (Solanum lycopersicum), a model plant for studying fruit development and ripening. It was shown that all SlTLPs except SlTLP11 contain both the Tub domain and F-box domain. An expression profiling analysis in different tomato tissues and developmental stages showed that 7 TLP genes are mainly expressed in vegetative tissues, flower, and early fruit developmental stages. Interestingly, other 4 TLP members (SlTLP1, SlTLP2, SlTLP4, and SlTLP5) were found to be highly expressed after breaker stage, suggesting a potential role of these genes in fruit ripening. Moreover, the induced expression of SlTLP1 and SlTLP2 by exogenous ethylene treatment and the down expression of the two genes in ripening mutants, further support their putative role in the ripening process. Overall, our study provides a basis for further investigation of the function of TLPs in plant development and fruit ripening.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
10.
Mol Microbiol ; 96(3): 548-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25641392

RESUMO

Halolysins are Tat-dependent extracellular subtilases of haloarchaea. Whether halolysins can be activated before transport across the cytoplasmic membrane in a folded state and how haloarchaea minimize the risk of intracellular activation of halolysins and proteolysis of cellular proteins are unknown. Here, we report that both the precursor and proform of halolysin SptA from Natrinema sp. J7-2 mature autocatalytically, and the SptA maturation proceeds less efficiently in the presence of KCl than NaCl. When produced in Haloferax volcanii, most SptA molecules are secreted into the culture medium, but a small number of molecules can be activated intracellularly, affecting the cell's growth. Furthermore, retardation of SptA secretion in Hfx. volcanii via mutation of the Tat signal peptide leads to intracellular accumulation of the active enzyme and subsequent cell death. Although the Sec signal peptide can mediate SptA secretion in Hfx. volcanii, the secreted protein undergoes proteolysis. In Natrinema sp. J7-2, SptA is secreted primarily during stationary phase, and the intracellular accumulation of mature enzyme occurs during the stationary and death phases. The growth phase-dependent synthesis of SptA, highly efficient secretion system, and high intracellular KCl concentration, contribute to the suppression of premature activation of this enzyme in Natrinema sp. J7-2.


Assuntos
Ativação Enzimática , Euryarchaeota/enzimologia , Euryarchaeota/metabolismo , Regulação da Expressão Gênica em Archaea , Serina Endopeptidases/metabolismo , Cloreto de Sódio/metabolismo , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Serina Endopeptidases/genética
11.
J Proteome Res ; 13(3): 1248-58, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24512091

RESUMO

Although in silico predictions have revealed that haloarchaea can be distinguished from other organisms in that the Tat pathway is used more extensively than the Sec pathway for haloarchaeal protein secretion, only a few haloarchaeal-secreted proteins have been experimentally confirmed. Here, the culture supernatant and membrane fraction of the haloarchaeon Natrinema sp. J7-2 grown at 23% salt concentration were subjected to RPLC-ESI-MS/MS analysis. In total, 46 predicted Tat substrates, 14 predicted Sec substrates, and 3 class III signal peptide-bearing proteins were detected. Approximately 65% of the detected Tat substrates contain lipoboxes, emphasizing the role of the Tat pathway in haloarchaeal lipoprotein secretion. Most of the detected Tat substrates are extracellular substrate (solute)-binding proteins and redox proteins. Despite the small number of Sec substrates, two of them, a cell surface glycoprotein and a putative lipoprotein carrier protein, were identified to be high-abundance secreted proteins. While limited proteins were detected in the culture supernatant, most of the secreted proteins were found in the membrane fraction. The anchoring of secreted proteins to the cell surface via a lipobox or a PGF-CTERM seems to be an adaptation strategy of haloarchaea to handle the harsh extracellular environment. Additionally, ∼15% of the integral membrane proteins (IMPs) detected in the membrane fraction possess putative Sec signal peptides or signal anchors, implying that the Sec pathway is important for membrane insertion of IMPs. This is the first report to describe the experimental secretome of haloarchaea and provide new information for better understanding of haloarchaeal protein secretion patterns.


Assuntos
Proteínas Arqueais/análise , Halobacteriaceae/química , Proteínas de Membrana Transportadoras/análise , Proteoma/análise , Proteínas Arqueais/metabolismo , Cromatografia de Fase Reversa , Halobacteriaceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Anotação de Sequência Molecular , Sinais Direcionadores de Proteínas , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
12.
Appl Environ Microbiol ; 80(18): 5698-708, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002433

RESUMO

The haloarchaeon Natrinema sp. strain J7-2 has the ability to degrade chitin, and its genome harbors a chitin metabolism-related gene cluster that contains a halolysin gene, sptC. The sptC gene encodes a precursor composed of a signal peptide, an N-terminal propeptide consisting of a core domain (N*) and a linker peptide, a subtilisin-like catalytic domain, a polycystic kidney disease domain (PkdD), and a chitin-binding domain (ChBD). Here we report that the autocatalytic maturation of SptC is initiated by cis-processing of N* to yield an autoprocessed complex (N*-I(WT)), followed by trans-processing/degradation of the linker peptide, the ChBD, and N*. The resulting mature form (M(WT)) containing the catalytic domain and the PkdD showed optimum azocaseinolytic activity at 3 to 3.5 M NaCl, demonstrating salt-dependent stability. Deletion analysis revealed that the PkdD did not confer extra stability on the enzyme but did contribute to enzymatic activity. The ChBD exhibited salt-dependent chitin-binding capacity and mediated the binding of N*-I(WT) to chitin. ChBD-mediated chitin binding enhances SptC maturation by promoting activation of the autoprocessed complex. Our results also demonstrate that SptC is capable of removing proteins from shrimp shell powder (SSP) at high salt concentrations. Interestingly, N*-I(WT) released soluble peptides from SSP faster than did M(WT). Most likely, ChBD-mediated binding of the autoprocessed complex to chitin in SSP not only accelerates enzyme activation but also facilitates the deproteinization process by increasing the local protease concentration around the substrate. By virtue of these properties, SptC is highly attractive for use in preparation of chitin from chitin-containing biomass.


Assuntos
Quitina/metabolismo , Regulação Enzimológica da Expressão Gênica , Halobacteriaceae/enzimologia , Halobacteriaceae/metabolismo , Serina Proteases/metabolismo , Caseínas/metabolismo , Estabilidade Enzimática , Ligação Proteica , Processamento de Proteína Pós-Traducional , Serina Proteases/genética , Cloreto de Sódio/metabolismo
13.
Water Res ; 255: 121480, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518415

RESUMO

River ecological health has been severely threatened by anthropogenic land-use pressures. Here, by combining remote sensing and molecular biology methods, we evaluated the impact of land-use activities on nitrification, a fundamental ecological process in rivers, which is conducted by ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB), or the newly discovered complete ammonia oxidisers (comammox). We explored the relationships of the abundance, activity, and diversity of AOA, AOB, and comammox in river sediments with land-use pressure by proposing a quantitative land use pattern index (LPI) over a 184 km continuum along the Beiyun River in North China. We found that comammox dominated nitrification in the forestry upstream (67.07 % in summer, 56.40 % in winter), while AOB became the major player in the urban middle (56.51 % in summer, 53.08 % in winter) and agricultural downstream reaches (62.98 % in summer, 50.74 % in winter). In addition, urban and agricultural land use lowered the α diversity of AOA and comammox, as well as simplified their co-occurrence networks, but promoted AOB diversity and complicated their networks. The structural equation model illustrated that the key drivers affecting the key taxa and activities were ammonia, and C/N for AOB, and total organic matter, and pH for comammox. We thus conclude that watershed urban and agricultural land use drive the niche differentiation of AOA, AOB, and comammox, specifically leading to a robust AOB community but weakened AOA and comammox communities. Our study connects the macro and micro worlds and provides a new paradigm for studying the variation in microbial communities as well as the potential ecological consequences under the increased anthropogenic land-use pressures in the Anthropocene.

14.
Adv Mater ; 36(12): e2209479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652538

RESUMO

The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.

15.
Bioresour Technol ; 394: 130269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154736

RESUMO

Denitrifying phosphorus removal using nitrite as an electron acceptor is an innovative, resource-efficient approach for nitrogen and phosphorus removal. However, the inhibitory effects of nitrite on anoxic phosphorus uptake and process stability are unclear. This study investigated the total phosphorus removal performance under nitrite stress and analyzed microbiome responses in 186 sludge samples. The results indicated that the total phosphorus removal rates and dominant taxon abundance were highly similar under nitrite stress. High nitrite stress induced a community-state shift, leading to unstable dynamics and decreased total phosphorus removal. This shift resulted from increased species cooperation. Notably, the shared genera OLB8 and Zoogloea under non-inhibitory nitrite stress, suggesting their vital roles in mitigating nitrite stress by enhancing carbon and energy metabolism. The response patterns of these bacterial communities to high nitrite stress can guide the design and optimization of high-nitrogen wastewater reactors.


Assuntos
Nitritos , Fósforo , Nitritos/metabolismo , Fósforo/metabolismo , Desnitrificação , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Nitrogênio , Eliminação de Resíduos Líquidos/métodos
16.
Adv Mater ; : e2310219, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219071

RESUMO

Sorption-based atmospheric water harvesting (SAWH) offers a sustainable strategy to address the global freshwater shortage. However, obtaining sorbents with excellent performance over a wide relative humidity (RH) range and devices with fully autonomous water production remains challenging. Herein, magnesium chloride (MgCl2) is innovatively converted into super hygroscopic magnesium complexes(MC), which can effectively solve the problems of salt deliquescence and agglomeration. The MC are then integrated with photothermal aerogels composed of sodium alginate and carbon nanotubes (SA/CNTs) to form composite aerogels, which showed high water uptake over a wide RH range, reaching 5.43 and 0.27 kg kg-1 at 95% and 20% RH, respectively. The hierarchical porous structure enables the as-prepared SA/CNTs/MC to exhibit rapid absorption/desorption kinetics with 12 cycles per day at 70% RH, equivalent to a water yield of 10.0 L kg-1 day-1. To further realize continuous and practical freshwater production, a fully solar-driven autonomous atmospheric water generator is designed and constructed with two SA/CNTs/MC-based absorption layers, which can alternately conduct the water absorption/desorption process without any other energy consumption. The design provides a promising approach to achieving autonomous, high-performance, and scalable SAWH.

17.
Nat Commun ; 15(1): 2413, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499575

RESUMO

The genome's dynamic nature, exemplified by elements like extrachromosomal circular DNA (eccDNA), is crucial for biodiversity and adaptation. Yet, the role of eccDNA in plants, particularly rice, remains underexplored. Here, we identify 25,598 eccDNAs, unveiling the widespread presence of eccDNA across six rice tissues and revealing its formation as a universal and random process. Interestingly, we discover that direct repeats play a pivotal role in eccDNA formation, pointing to a unique origin mechanism. Despite eccDNA's prevalence in coding sequences, its impact on gene expression is minimal, implying its roles beyond gene regulation. We also observe the association between eccDNA's formation and minor chromosomal deletions, providing insights of its possible function in regulating genome stability. Further, we discover eccDNA specifically accumulated in rice leaves, which may be associated with DNA damage caused by environmental stressors like intense light. In summary, our research advances understanding of eccDNA's role in the genomic architecture and offers valuable insights for rice cultivation and breeding.


Assuntos
Oryza , Oryza/genética , DNA Circular/genética , Melhoramento Vegetal , DNA , Genoma
18.
Hortic Res ; 11(2): uhad275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344652

RESUMO

The phytohormone ethylene is well known for its important role in the ripening of climacteric fruit, such as tomato (Solanum lycopersicum). However, the role and mode of action of other plant hormones in climacteric fruit ripening regulation are not fully understood. Here, we showed that exogenous GA treatment or increasing endogenous gibberellin content by overexpressing the gibberellin synthesis gene SlGA3ox2 specifically in fruit tissues delayed tomato fruit ripening, whereas treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) accelerated fruit ripening. Moreover, exogenous ethylene treatment cannot completely reverse the delayed fruit ripening phenotype. Furthermore, exogenous GA treatment of ethylene signalling mutant Never ripe (Nr) or SlEBF3-overexpressing lines still delayed fruit ripening, suggesting that GA involved in fruit ripening partially depends on ethylene. Transcriptome profiling showed that gibberellin affect the ripening of fruits by modulating the metabolism and signal transduction of multiple plant hormones, such as auxin and abscisic acid, in addition to ethylene. Overall, the results of this study provide new insight into the regulation of gibberellin in fruit ripening through mediating multiple hormone signals.

19.
J Mater Chem B ; 12(5): 1317-1329, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38229564

RESUMO

Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.


Assuntos
Fotoquimioterapia , Porfirinas , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cobre/farmacologia , Porfirinas/farmacologia , Espécies Reativas de Oxigênio , Glutationa , Bactérias , Biofilmes
20.
Nat Commun ; 15(1): 5297, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906900

RESUMO

Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA