Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902625

RESUMO

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Assuntos
Aegilops , Sementes , Triticum , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Sementes/genética , Sementes/metabolismo , Hibridização Genética , Poliploidia , Amido/biossíntese , Amido/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteômica/métodos , Multiômica
2.
Chemistry ; 30(11): e202303421, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38010239

RESUMO

Multifunctional groups diarylamines, an innovative product, efficiently produced from arylamines and p-nitrosoanisole derivatives by intermolecular SN Ar under weak acid conditions. This SN Ar proceeds under mild reaction conditions, and more significantly, the substrates involved do not necessarily require strong electron-withdrawing groups. Moreover, this SN Ar is characterized by resistance to space crowding, tolerance to halogen and nitroso functional groups, and high regioselectivity. Mechanistic observations suggest that the SN Ar is the result of the transfer of the positive charge center of the protonated nitroso group to the p-methoxy group.

3.
BMC Cardiovasc Disord ; 24(1): 121, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388385

RESUMO

BACKGROUND: Atherosclerosis(AS) poses a pressing challenge in contemporary medicine. Formononetin (FMN) plays a crucial role in its prevention and treatment. However, the detailed impact of FMN on the stability of atherosclerotic plaques and its underlying mechanisms remain to be elucidated. METHODS: An intervention consisting of FMN was given along with a high-fat food regimen in the ApoE-/- mouse model. The investigation included the evaluation of the degree of atherosclerotic lesion, the main components of the plaque, lipid profiles, particular markers indicating M1/M2 macrophage phenotypes, the quantities of factors related to inflammation, the infiltration of macrophages, and the identification of markers linked to the α7nAChR/JAK2/STAT3 axis effect molecules. RESULTS: The evaluation of aortic morphology in ApoE-/-mice revealed that FMN significantly improved the plaque area, fibrous cap protrusion, lipid deposition, and structural alterations on the aortic surface, among other markers of atherosclerosis,and there is concentration dependence. Furthermore, the lipid content of mouse serum was assessed, and the results showed that the low-, medium-, and high-dosage FMN groups had significantly lower levels of LDL-C, ox-LDL, TC, and TG. The results of immunohistochemical staining indicated that the low-, medium-, and high-dose FMN therapy groups had enhanced CD206 expression and decreased expression of CD68 and iNOS. According to RT-qPCR data, FMN intervention has the potential to suppress the expression of iNOS, COX-2, miR-155-5p, IL-6, and IL-1ß mRNA, while promoting the expression of IL-10, SHIP1, and Arg-1 mRNA levels. However, the degree of inhibition varied among dosage groups. Western blot investigation of JAK/STAT signaling pathway proteins and cholinergic α7nAChR protein showed that p-JAK2 and p-STAT3 protein expression was suppressed at all dosages, whereas α7nAChR protein expression was enhanced. CONCLUSIONS: According to the aforementioned findings, FMN can reduce inflammation and atherosclerosis by influencing macrophage polarization, blocking the JAK/STAT signaling pathway, and increasing α7nAChR expression.


Assuntos
Aterosclerose , Isoflavonas , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Transdução de Sinais , Camundongos Knockout para ApoE , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas E/genética , Inflamação , RNA Mensageiro , Camundongos Endogâmicos C57BL
4.
BMC Genomics ; 24(1): 178, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020178

RESUMO

BACKGROUND: Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS: We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION: Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.


Assuntos
Fusarium , Fusarium/fisiologia , Tetraploidia , Lignina , Poaceae , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética
5.
Theor Appl Genet ; 136(4): 67, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952028

RESUMO

KEY MESSAGE: Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.


Assuntos
Basidiomycota , Triticum , Humanos , Mapeamento Cromossômico , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Austrália , Doenças das Plantas/genética
6.
Theor Appl Genet ; 136(10): 213, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740730

RESUMO

KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Alelos , Embaralhamento de DNA , Grão Comestível
7.
Philos Trans A Math Phys Eng Sci ; 381(2254): 20220168, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37454683

RESUMO

Determination of pavement internal condition from a non-destructive field test is a persistent topic for its practical necessity and difficulty. It is essentially an inverse problem calibrating pavement material and structural properties from pavement responses. Considering the intrinsic complexity of asphalt pavement materials (e.g., time and temperature dependencies of asphalt mixture and stress dependency of unbound granular materials), this problem has become a typical high-dimensional optimization problem with a large and diverse set of calibrated parameters. This study investigated the feasibility of artificial intelligence-based finite element model updating in addressing this problem, and focused on the accuracy as well as stability of the backcalculated results. For a comprehensive evaluation of this method, the effects of its components such as the surrogate model representing the pavement system, the applied pavement response, the optimization algorithm and the backcalculation scheme were characterized. Finally, we found that the sensitivity of applied pavement responses to thebackcalculated pavement condition, the number of applied pavement responses and the balance between the backcalculated pavement condition and the applied test were of significant importance to achieving accurate and stable backcalculation results. Corresponding modifications were recommended to be conducted in future research for improving the performance of the proposed backcalculation method. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.

8.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959870

RESUMO

Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.


Assuntos
Doenças Cardiovasculares , Medicamentos de Ervas Chinesas , Isoflavonas , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede , Isoflavonas/química , Cromatografia Líquida de Alta Pressão/métodos , Fígado/metabolismo
9.
J Sci Food Agric ; 103(4): 1668-1675, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541584

RESUMO

BACKGROUND: Eighteen wheat (Triticum aestivum-Aegilops sharonensis) introgression lines were generated in the previous study. These lines possessed four types of high molecular weight glutenin subunit (HMW-GS) combinations consisting of one glutenin from Ae. sharonensis (Glu-1Ssh ) plus one or more HMW-GSs from common wheat (Glu-A1, Glu-B1, or Glu-D1). RESULTS: In this study, we conducted quality tests to explore the effects of 1Ssh x2.3 and 1Ssh y2.9 on the processing quality of 18 wheat-Aegilops sharonensis introgression lines. Our data showed that the 1Ssh x2.3 and 1Ssh y2.9 subunits had a positive effect on gluten and baking quality. The bread volume of all these lines was higher than that of the parental wheat line LM3. In these lines, the HMW-GS content and the HMW/LMW ratio of 66-36-11 were higher than those of LM3, and the 66-36-11 line exhibited greatly improved quality parameters in comparison with the parent LM3. CONCLUSION: These results demonstrated that the 1Ssh x2.3 and 1Ssh y2.9 subunits from Ae. sharonensis contributed immensely to gluten strength and bread-baking quality, and proved a positive relationship between the HMW-GS sizes and their effects on dough strength in vivo. The materials developed could be used by breeding programs aiming to increase bread-making quality. © 2022 Society of Chemical Industry.


Assuntos
Aegilops , Triticum , Triticum/genética , Triticum/química , Pão , Peso Molecular , Melhoramento Vegetal , Glutens/química
10.
Comput Graph ; 111: 103-110, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36694846

RESUMO

COVID-19 causes persistent symptoms such as weakness and myasthenia in most patients. Due to the cross-infection of COVID-19, the traditional face-to-face rehabilitation services are risky for the elderly. To ensure that the elderly in urgent need of rehabilitation services receive training while minimizing the disturbance of the COVID-19 pandemic on their social activities. We have improved the existing virtual upper limb training system, and added a social factor to the system. Seniors with upper limb rehabilitation needs can use the system to compete or collaborate with others for training. In addition, a set of natural and scientific exclusive gestures have been designed under the direction of following the doctor's advice. The experiment is conducted jointly with the chief physicians of the geriatrics department in the authoritative class-A hospitals of Class III. Our experiment, which lasted for two months, showed that the virtual training system with social factors added had the best rehabilitation effect and enhanced the initiative of patients. The system has value for popularization during the COVID-19 epidemic.

11.
Angew Chem Int Ed Engl ; 62(9): e202217191, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36573904

RESUMO

Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.

12.
New Phytol ; 234(5): 1770-1781, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35292965

RESUMO

Seed dormancy is an important life history state that increases survival and fitness of seed plants, and thus it has attracted much attention. However, global biogeography, effects of paleoenvironment, evolutionary roles of dormancy transitions, and differences in adaptations of seed dormancy between life-forms are poorly understood. We compiled global distribution records for seed dormancy of 12 743 species and their phylogeny to explore the biogeographic patterns, environmental drivers, and evolutionary transitions between seed dormancy and nondormancy. Biogeographic patterns reveal a low proportion of dormancy in tropical rainforest regions and arctic regions and a high proportion of dormancy in remaining tropical, subtropical, and temperate regions for all species and woody species. Herbaceous plants show a greater proportion of dormancy in most global regions except arctic regions. Seasonal environments have a consistent positive influence on the dormancy pattern for both life-forms, but precipitation and temperature were important driving factors for woody and herbaceous plants, respectively. Seed dormancy was the dominating state during the evolutionary history of seed plants, and dormancy transitions had a significant relationship with paleotemperatures. Dormancy and nondormancy transitions in response to fluctuating environments during long-term evolutionary history may have played important roles in the diversification of seed plants. Our results add to the current knowledge about seed dormancy from macro-adaptive perspectives and the potential adaptive mechanisms of seed plants.


Assuntos
Dormência de Plantas , Sementes , Aclimatação , Evolução Biológica , Germinação , Dormência de Plantas/fisiologia , Plantas , Floresta Úmida , Sementes/fisiologia
13.
Med Sci Monit ; 28: e937786, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35899496

RESUMO

The original published paper had the same image for Figure 5E and 5F. Figure 5 should have been as follows: Reference: Zhengqing Yang, Hui Cheng, Yazhou Zhang, Yan Zhou. Identification of NDRG Family Member 4 (NDRG4) and CDC28 Protein Kinase Regulatory Subunit 2 (CKS2) as Key Prognostic Genes in Adrenocortical Carcinoma by Transcriptomic Analysis. Med Sci Monit, 2021; 27:e928523. DOI: 10.12659/MSM.928523.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Quinases relacionadas a CDC2 e CDC28 , Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Quinases relacionadas a CDC2 e CDC28/genética , Proteínas de Ciclo Celular/metabolismo , Família , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , Proteínas Quinases/metabolismo , Transcriptoma/genética
14.
Med Sci Monit ; 28: e936923, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974685

RESUMO

BACKGROUND The aim of this study was to evaluate the efficacy of dynamic hip screw (DHS) and femoral nail antirotation (PFNA) in the treatment of lateral-wall high-risk type of intertrochanteric fractures. MATERIAL AND METHODS A total of 98 patients with high-risk intertrochanteric fractures of the lateral wall who underwent surgery from January 2019 to December 2020 were selected as the study subjects. Of these, 52 were treated surgically with PFNA (mean age 73.45±5.95 years) and 46 with DHS (71.37±6.22 years). We followed up these patients and compared the occurrence of the 2 surgical methods in terms of perioperative period, complication rate, and functional recovery. RESULTS In terms of lateral wall fracture, there were 2 cases of PFNA and 10 cases of DHS, and the difference between groups was statistically significant (P<0.05). Operative time (mean 54.94±7.29 vs 61.17±6.45) and intraoperative blood loss (72.80±9.18 vs 96.12±8.22) was significantly lower in the PFNA group compared to the DHS group (all P<0.05). Efficacy in the PFNA group was significantly better than in the DHS group. The HHS at follow-up was significantly higher in the PFNA group (mean 80.73±9.20 vs 64.19±8.12) than in the DHS group (P<0.001). The VAS score at follow-up was significantly lower in the PFNA group (1.78±0.34 vs 2.65±0.23) than in the DHS group (P<0.001). CONCLUSIONS PFNA is more effective than DHS in the treatment of high-risk lateral wall fractures in the elderly, with the advantages of lower incidence of complications and better recovery of hip joint function. PFNA warrants clinical application.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Idoso , Pinos Ortopédicos , Parafusos Ósseos , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Fraturas do Quadril/etiologia , Fraturas do Quadril/cirurgia , Humanos , Estudos Retrospectivos , Resultado do Tratamento
15.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955567

RESUMO

The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.


Assuntos
Amilose , Triticum , Aminoácidos/metabolismo , Amilose/análise , Domínio Catalítico , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Tetraploidia , Triticum/metabolismo
16.
J Sci Food Agric ; 102(13): 5974-5983, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35445411

RESUMO

BACKGROUND: An increased demand for food has mirrored the increasing global population. Obesity and diabetes are two disorders induced by poor eating choices. Consequently, there is an urgent need to develop modified foods that can ameliorate such illnesses. The objective of this study was to explore the effect of Waxy genes on the structural and functional properties of starch, with the aim of improving food quality. Wild-type tetraploid wheat was compared with three mutants with different Waxy gene combinations. RESULTS: The proportion of B-type granules was higher in the mutants than in the wild-type (Wx-AB), and there were significant changes in the starch granule size, number, and phenotype in the Wx free mutant (Wx-ab). The lowest branch chain length was observed in Wx-ab, whereas Wx-AB had the highest branch chain length of DP ≥ 37. Wx-ab had the highest degree of crystallinity. The crystallinity trend followed the order Wx-ab>Wx-Ab>Wx-aB>Wx-AB. The amount of slowly digestible starch (SDS) was higher in native, gelatinized, and retrograded starch in the mutant. The amount of retrograded starch was closer to gelatinized starch than to native starch. CONCLUSION: Waxy proteins make a substantial contribution to starch structure. A lack of waxy proteins reduced the unit chains markedly compared with the control. Waxy proteins significantly affected the smaller and longer chains of starch. The lines with differing waxy composition had different effects on food digestion. The Wx-AB in native starch and Wx-Ab in gelatinized starch can control obesity and diabetes by slow-digesting carbohydrates and high resistance to digestion. © 2022 Society of Chemical Industry.


Assuntos
Sintase do Amido , Triticum , Obesidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Tetraploidia , Triticum/química
17.
J Sci Food Agric ; 102(5): 2012-2022, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34558070

RESUMO

BACKGROUND: Wheat is an essential source of starch. The GBSS or waxy genes are responsible for synthesizing amylose in cereals. The present study identified a novel Wx-A1 null mutant line from an ethyl methanesulfonate (EMS)-mutagenized population of common wheat cv. SM126 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel analyses. RESULTS: The alignment of the Wx-A1 gene sequences from the mutant and parental SM126 lines showed only one single nucleotide polymorphism causing the appearance of a premature stop codon and Wx-A1 inactivation. The lack of Wx-A1 protein resulted in decreased amylose, total starch and resistant starch. The starch morphology assessment revealed that starch from mutant seeds was more wrinkled, increasing its susceptibility to digestion. Regarding the starch thermodynamic properties, the gelatinization temperature was remarkably reduced in the mutant compared to parental line SM126. The digestibility of native, gelatinized, and retrograded starches was analyzed for mutant M4-627 and the parental SM126 line. In the M4-627 line, rapidly digestible starch contents were increased, whereas resistant starch was decreased in the three types of starch. CONCLUSION: Waxy protein is essential for starch synthesis. The thermodynamic characteristics were decreased in the Wx-A1 mutant line. The digestibility properties of starch were also affected. Therefore, the partial waxy mutant M3-627 might play a significant role in food improvement. Furthermore, it might also be used to produce high-quality noodles. © 2021 Society of Chemical Industry.


Assuntos
Sintase do Amido , Triticum , Amilose/análise , Metanossulfonato de Etila/metabolismo , Éxons , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Triticum/genética , Triticum/metabolismo
18.
Genome ; 64(12): 1067-1080, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34058097

RESUMO

The basic leucine zipper (bZIP) family of genes encode transcription factors that play key roles in plant growth and development. In this study, a total of 92 HvbZIP genes were identified and compared with previous studies using recently released barley genome data. Two novel genes were characterized in this study, and some misannotated and duplicated genes from previous studies have been corrected. Phylogenetic analysis results showed that 92 HvbZIP genes were classified into 10 groups and three unknown groups. The gene structure and motif distribution of the three unknown groups implied that the genes of the three groups may be functionally different. Expression profiling indicated that the HvbZIP genes exhibited different patterns of spatial and temporal expression. Using qRT-PCR, more than 10 HvbZIP genes were identified with expression patterns similar to those of starch synthase genes in barley. Yeast one-hybrid analysis revealed that two of the HvbZIP genes exhibited in vitro binding activity to the promoter of HvAGP-S. The two HvbZIP genes may be candidate genes for further study to explore the mechanism by which they regulate the synthesis of barley starch.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Hordeum , Proteínas de Plantas , Amido/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética
19.
Mol Breed ; 41(8): 49, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37309542

RESUMO

Wheat is a major staple food crop worldwide because of the unique properties of wheat flour. High molecular weight glutenin subunits (HMW-GSs), which are among the most critical determinants of wheat flour quality, are responsible for the formation of glutenin polymeric structures via interchain disulfide bonds. We herein describe the identification of a new HMW-GS Dy10 allele (Dy10-m619SN). The amino acid substitution (serine-to-asparagine) encoded in this allele resulted in a partial post-translational cleavage that produced two new peptides. These new peptides disrupted the interactions among gluten proteins because of the associated changes to the number of available cysteine residues for interchain disulfide bonds. Consequently, Dy10-m619SN expression decreased the size of glutenin polymers and weakened glutens, which resulted in wheat dough with improved cookie-making quality, without changes to the glutenin-to-gliadin ratio. In this study, we clarified the post-translational processing of HMW-GSs and revealed a new genetic resource useful for wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01238-9.

20.
Med Sci Monit ; 27: e928523, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667214

RESUMO

BACKGROUND Adrenocortical carcinoma (ACC) is an aggressive cancer with heterogeneous outcomes. In this study, we aimed to investigate genomic and prognostic features of ACC. MATERIAL AND METHODS Clinical, pathologic, and transcriptomic data from 2 independent datasets derived from ACC samples (TCGA-ACC dataset, GEO-GSE76021 dataset) were collected. Weighted gene co-expression network analysis (WGCNA) and survival analyses were performed to identify prognostic genes. Pathway analysis was performed for mechanistic analysis. xCell deconvolution was performed for tumor microenvironment analysis. RESULTS In the TCGA-ACC cohort, WGCNA identified a prognostic module of 5408 genes. Differential expression analysis identified 1969 genes that differed in expression level between long-term and short-term survivors. Univariate Cox regression model analysis identified 8393 genes with prognostic value. The intersection of these gene sets included 820 prognostic genes. Similar protocols were performed for the GSE76021 dataset, and 5 candidate genes were identified. Further intersection of these genes finally identified NDRG4 and CKS2 as key prognostic genes. Multivariate Cox regression model analysis validated the prognostic value of NDRG4 (HR=0.61, 95% CI 0.46-0.80) and CKS2 (HR=2.52, 95% CI 1.38-4.60). Moreover, NDRG4 and CKS2 expression predicted survival in patients treated with mitotane (P<0.001). Further mechanism exploration found an association between CKS2 and DNA mismatch repair pathways. Moreover, NDRG4 positively correlated with CD8⁺ T cell infiltration, while CKS2 negatively correlated with it. CONCLUSIONS We identified NDRG4 and CKS2 expression as key prognostic genes in ACC, which may help in risk stratification of ACC. Moreover, a close relationship was found between CKS2 and mismatch repair pathways. Moreover, immune cell infiltration differed according to NDRG4 and CKS2 expression.


Assuntos
Carcinoma Adrenocortical/genética , Quinases relacionadas a CDC2 e CDC28/genética , Proteínas de Ciclo Celular/genética , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/mortalidade , Adulto , Biomarcadores Tumorais/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Proteínas Quinases/genética , Análise de Sobrevida , Transcriptoma/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA