Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(15): e2304886, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009493

RESUMO

Phase change material (PCM) can provide a battery system with a buffer platform to respond to thermal failure problems. However, current PCMs through compositing inorganics still suffer from insufficient thermal-transport behavior and safety reliability against external force. Herein, a best-of-both-worlds method is reported to allow the PCM out of this predicament. It is conducted by combining a traditional PCM (i.e., paraffin wax/boron nitride) with a spirally weaved polyethylene fiber fabric, just like the traditional PCM is wearing functional underwear. On the one hand, the spirally continuous thermal pathways of polyethylene fibers in the fabric collaborate with the boron nitride network in the PCM, enhancing the through-plane and in-plane thermal conductivity to 10.05 and 7.92 W m-1 K, respectively. On the other, strong polyethylene fibers allow the PCM to withstand a high puncture strength of 47.13 N and tensile strength of 18.45 MPa although above the phase transition temperature. After this typical PCM packs a triple Li-ion battery system, the battery can be promised reliable safety management against both thermal and mechanical abuse. An obvious temperature drop of >10 °C is observed in the battery electrode during the cycling charging and discharging process.

2.
Small ; 19(47): e2303536, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507816

RESUMO

Green fabrication of superhydrophobic surface by water-based processing is still challenging, because introduction of the substances with hydrophilic moieties compromises its superhydrophobicity. Herein, a plasmon-driven photochemical reduction reaction under ultraviolet light (UVA) irradiation is first discovered and is applied to deoxygenation of hydrophilic organic adsorbates on rough nano-Ag coating for the formation of stable superhydrophobic surface. A nano-Ag coating with strong localized surface plasmon resonance in the UVA region is prepared by a water-based silver mirror reaction and results in a unique chemical reduction reaction on its surface. Consequently, the low residual hydrophilic functionalities and the formed cross-linked structure of the adsorbate on Ag nanoparticles (NPs) enables the coating to exhibit stable superhydrophobicity against to both air and water. The superhydrophobic Ag NP-coated sandpaper can also be used as a surface-enhanced Raman scattering (SERS) substrate to concentrate aqueous analytes for trace detection.

3.
Small ; 19(32): e2300281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072894

RESUMO

Developing stable catalysts with higher selectivity and activity within a wide potential range is critical for efficiently converting CO2 to ethanol. Here, the carbon-encapsulated CuNi nanoparticles anchored on nitrogen-doped nanoporous graphene (CuNi@C/N-npG) composite are designedly prepared and display the excellent CO2 reduction performance with the higher ethanol Faradaic effiency (FEethanol  ≥ 60%) in a wide potential window (600 mV). The optimal cathodic energy efficiency (47.6%), Faradaic efficiency (84%), and selectivity (96.6%) are also obtained at -0.78 V versus reversible hydrogen electrode (RHE). Combining with the density functional theory (DFT) calculations, it is demonstrated that the stronger metal-support interaction (Ni-N-C) can regulate the surface electronic structure effectively, boosting the electron transfer and stabilizing the active sites (Cu0 -Cuδ+ ) on the surface of CuNi@C/N-npG, finally realizing the controllable transition of reaction intermediates. This work may guide the designs of electrocatalysts with highly catalytic performance for CO2 reduction to C2+ products.

4.
Nat Mater ; 21(6): 689-695, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484330

RESUMO

In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.


Assuntos
Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Adsorção , Benzeno/química , Gases
5.
Inorg Chem ; 62(38): 15736-15746, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37697809

RESUMO

Sn-based anodes are promising high-capacity anode materials for low-cost lithium ion batteries. Unfortunately, their development is generally restricted by rapid capacity fading resulting from large volume expansion and the corresponding structural failure of the solid electrolyte interphase (SEI) during the lithiation/delithiation process. Herein, heterostructural core-shell SnO2-layer-wrapped Sn nanoparticles embedded in a porous conductive nitrogen-doped carbon (SOWSH@PCNC) are proposed. In this design, the self-sacrificial Zn template from the precursors is used as the pore former, and the LiF-Li3N-rich SEI modulation layer is motivated to average uniform Li+ flux against local excessive lithiation. Meanwhile, both the chemically active nitrogen sites and the heterojunction interfaces within SnO2@Sn are implanted as electronic/ionic promoters to facilitate fast reaction kinetics. Consequently, the as-converted SOWSH@PCNC electrodes demonstrate a significantly boosted Li+ capacity of 961 mA h g-1 at 200 mA g-1 and excellent cycling stability with a low capacity decaying rate of 0.071% after 400 cycles at 500 mA g-1, suggesting their great promise as an anode material in high-performance lithium ion batteries.

6.
Altern Ther Health Med ; 29(8): 882-891, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708561

RESUMO

Nephrotic syndrome, a common kidney disease syndrome in children, has triggered extensive clinical research to identify safe and effective treatments. Qingxin Lianzi Drink, as a traditional Chinese medicine prescription, has been paid more and more attention in the treatment of nephrotic syndrome in children. Its main ingredients include Shilotus meat, scutellaria skullcap and ground bone skin, etc. These ingredients have the effects of clearing heat and detoxifying, reducing swelling and water, and nourishing liver and kidney. In the treatment of nephrotic syndrome in children, Qingxin Lianzi Drink can play a role in many ways: first, it can inhibit inflammatory response, reduce glomerular inflammatory damage, relieve proteinuria and other symptoms; Secondly, the ingredients such as stone lotus meat can promote the excretion of waste and water in the body, reduce edema and edema and other symptoms; Finally, scutellaria and other ingredients can nourish liver and kidney and promote the recovery of liver and kidney function. At present, a large number of studies have found that Qingxin Lianzi Drink has obvious effect on chronic kidney disease. In addition, Qingxin Lianzi Drink as a natural therapy, compared with traditional western medicine treatment, more safe, natural and effective, has been widely concerned. Therefore, Qingxin Lianzi Drink in the treatment of children with nephrotic syndrome of the mechanism of action and efficacy evaluation of the study is of great significance. In this paper, combining the pathogenesis and treatment status of nephrotic syndrome in children, the mechanism of Qingxin Lianzi Drink in the treatment of nephrotic syndrome is explored, which can better understand its effectiveness in the treatment of nephrotic syndrome in children, and provide scientific basis for its application in clinical practice.


Assuntos
Síndrome Nefrótica , Criança , Humanos , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/diagnóstico , Rim , Medicina Tradicional Chinesa , Edema , Água
7.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298996

RESUMO

ZnIn2S4 (ZIS) is widely used in the field of photocatalytic hydrogen production due to its unique photoelectric properties. Nonetheless, the photocatalytic performance of ZIS usually faces problems of poor conductivity and rapid recombination of charge carriers. Heteroatom doping is often regarded as one of the effective strategies for improving the catalytic activity of photocatalysts. Herein, phosphorus (P)-doped ZIS was prepared by hydrothermal method, whose photocatalytic hydrogen production performance and energy band structure were fully studied. The band gap of P-doped ZIS is about 2.51 eV, which is slightly smaller than that of pure ZIS. Moreover, due to the upward shift of its energy band, the reduction ability of P-doped ZIS is enhanced, and P-doped ZIS also exhibits stronger catalytic activity than pure ZIS. The optimized P-doped ZIS exhibits a hydrogen production rate of 1566.6 µmol g-1 h-1, which is 3.8 times that of the pristine ZIS (411.1 µmol g-1 h-1). This work provides a broad platform for the design and synthesis of phosphorus-doped sulfide-based photocatalysts for hydrogen evolution.


Assuntos
Hidrogênio , Luz , Condutividade Elétrica , Fósforo
8.
Inorg Chem ; 61(49): 20123-20132, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441161

RESUMO

Compared with the Haber Bosch process, the electrochemical nitrogen reduction reaction (NRR) under mild conditions provides an alternative and promising route for ammonia synthesis due to its green and sustainable features. However, the great energy barrier to break the stable N≡N bond hinders the practical application of NRR. Though Fe is the only common metal element in all biological nitrogenases in nature, there is still a lack of study on developing highly efficient and low-cost Fe-based catalysts for N2 fixation. Herein, Co-doped Fe3S4 nanoflowers were fabricated as the intended catalyst for NRR. The results indicate that 4% Co-doped Fe3S4 nanoflowers achieve a high Faradaic efficiency of 17% and a NH3 yield rate of 37.5 µg·h-1·mg-1cat. at -0.55 V versus RHE potential in 0.1 M HCl, which is superior to most Fe-based catalysts. The introduction of Co atoms can not only shift the partial density states of Fe3S4 toward the Fermi level but also serve as new active centers to promote N2 absorption, lowering the energy barrier of the potential determination step to accelerate the catalytic process. This work paves a pathway of the morphology and doping engineering for Fe-based electrocatalysts to enhance ammonia synthesis.


Assuntos
Amônia , Fixação de Nitrogênio , Nitrogenase , Nitrogênio
9.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293419

RESUMO

Angiotensin-converting enzyme 2 (ACE2), a functional receptor for SARS-CoV, now appears likely to mediate 2019-nCoV entry into human cells. However, inhibitors such as PAP-1 and bergamottin have been discovered; both of them can preferentially bind to ACE2, prevent RBD Spike S protein from binding to ACE2, and reduce the binding sites for RBD Spike S protein. In addition, we investigated the binding energy of PAP-1 and bergamottin with ACE2 through molecular docking with bio-layer interferometry (BLI) and found relatively high binding affinity (KD = 48.5 nM, 53.1 nM) between the PAP-1 and bergamottin groups. In addition, the nanomolar fraction had no effect on growth of the AT-II cell, but 150 µM PAP-1 and 75 µM bergamottin inhibited the proliferation of AT-II cells in vitro by 75% and 68%, respectively. Meanwhile, they significantly reduced ACE2 mRNA and proteins by 67%, 58% and 55%, 41%, respectively. These results indicate that psoralen compounds PAP-1 and bergamottin binding to ACE2 protein could be further developed in the fight against COVID-19 infection during the current pandemic. However, attention should be paid to the damage to human alveolar type II epithelial cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Furocumarinas , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Furocumarinas/farmacologia , RNA Mensageiro/metabolismo , Ligação Proteica
10.
Inorg Chem ; 59(16): 11728-11735, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799465

RESUMO

Embedding a functional metal-oxo cluster within the matrix of metal-organic frameworks (MOFs) is a feasible approach for the development of advanced porous materials. Herein, three isoreticular pillar-layered MOFs (Co6-MOF-1-3) based on a unique [Co6(µ3-OH)6] cluster were designed, synthesized, and structurally characterized. For these Co6-MOFs, tuning of the framework backbone was facilitated due to the existence of second ligands, which results in adjustable apertures (8.8 to 13.4 Å) and high Brunauer-Emmett-Teller surfaces (1896-2401 m2 g-1). As the [Co6(µ3-OH)6] cluster has variable valences, these MOFs were then utilized as heterogeneous catalysts for the selective oxidation of styrene and benzyl alcohol, showing high conversion (>90%) and good selectivity. The selectivity of styrene to styrene oxide surpassed 80% and that of benzyl alcohol to benzaldehyde was up to 98%. The calculated TOF values show that the increase of reaction rate is positively correlated with the enlargement of pore sizes in these MOFs. Further, a stability test and cycling experiment proved that these Co6-MOFs have well-observed stability and recyclability.

11.
J Am Chem Soc ; 141(26): 10283-10293, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180667

RESUMO

Metal-organic frameworks (MOFs) have been developing at an unexpected rate over the last two decades. However, the unsatisfactory chemical stability of most MOFs hinders some of the fundamental studies in this field and the implementation of these materials for practical applications. The stability in a MOF framework is mostly believed to rely upon the robustness of the M-L (M = metal ion, L = ligand) coordination bonds. However, the role of organic linkers as agents of stability to the framework, particularly the linker rigidity/flexibility, has been mostly overlooked. In this work, we demonstrate that a ligand-rigidification strategy can enhance the stability of MOFs. Three series of ligand rotamers with the same connectivity but different flexibility were prepared. Thirteen Zr-based MOFs were constructed with the Zr6O4(OH4)(-CO2) n units ( n = 8 or 12) and corresponding ligands. These MOFs allow us to evaluate the influence of ligand rigidity, connectivities, and structure on the stability of the resulting materials. It was found that the rigidity of the ligands in the framework strongly contributes to the stability of corresponding MOFs. Furthermore, water adsorption was performed on some chemically stable MOFs, showing excellent performance. It is expected that more MOFs with excellent stability could be designed and constructed by utilizing this strategy, ultimately promoting the development of MOFs with higher stability for synthetic chemistry and practical applications.

12.
Small ; 15(22): e1805432, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31026109

RESUMO

Nanoporous metals represent a class of functional materials with unique bicontinuous open porous structural properties, making them ideal candidates for various catalyst applications. However, the pursuit of nanoporous properties, extremely small pores, and high surface area, results in the restriction of mass transport. Herein, a free-standing hierarchical nanoporous Cu material, prepared by a selective laser melting 3D printing technique and a one-step dealloying process, is presented as a highly efficient electrocatalyst for methanol oxidation. It is demonstrated that the digitally controlled hierarchical structure with macro- and nano-scaled pores can be utilized for promoting and directing mass transport as well as for the enhancement of catalytic properties. This work highlights a facile, low-cost, and alternative strategy for hierarchical nanoporous structure design that can be applied to binary, ternary, and quaternary metal alloys for various functional applications.

13.
Pak J Pharm Sci ; 31(4(Special)): 1613-1616, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30203747

RESUMO

Neonatal nutritional status means great significance for health, safety and thriving growth of neonates. Therefore, clinical evaluation of neonatal nutritional status is of great significance. In order to find effective judgment basis and curative effect evaluation index that reflect nutritional status of neonate. In this study randomly selected 2400 cases of premature infants from neonates born during June 2014 - June 2015 as study group, and selected 2000 normal neonates born in the same period as reference group. A comparative study was done on basic situation of the two indexes of retinol binding protein and prealbumin of the two groups of neonates. Results showed that retinol binding protein index of observation group infants was relatively low, when compared to reference group neonates, differences between the two groups P<0.05, with statistical significance. Medical personnel timely provided intravenous nutrition therapy for observation group infants and measure their index of retinol binding protein and prealbumin after 7 days of treatment, finding obvious improvement compared to the previous one. Neonatal nutritional status improved significantly, with difference between the two groups P<0.05, with statistical value. Hence, it is not difficult to conclude that timely index detection of retinol binding protein and prealbumin of neonates means important significance for neonatal nutrition evaluation, improvement in quality level of neonatal life, and thus is recommended to be promoted in clinical application.


Assuntos
Recém-Nascido Prematuro/sangue , Avaliação Nutricional , Pré-Albumina/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Masculino , Terapia Nutricional
14.
Chemphyschem ; 18(22): 3245-3252, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28782155

RESUMO

Metal-organic frameworks (MOFs) have shown great potential for application in various fields, including CO2 capture and proton conduction. For promoting their practical applications, both optimization of a given property and enhancement of chemical stability are crucial. In this work, three base-stable isostructural MOFs, [Ni8 (OH)4 (H2 O)2 (BDP-X)6 ] (Ni-BDP-X; H2 BDP=1,4-bis(4-pyrazolyl)benzene, X=CHO, CN, COOH) with different functional groups, are designed, synthesized, and used in CO2 capture and proton conduction experiments. They possess face-centered cubic topological structures with functional nanoscale cavities. Importantly, these MOFs are fairly stable to maintain their structures in boiling water and 4 M sodium hydroxide solution at room temperature. Functionalization endows them with tunable properties. In gas adsorption studies, these MOFs exhibit selective adsorption of CO2 over CH4 and N2 , and in particular the introduction of COOH groups provides the highest selectivity. In addition, the COOH-functionalized Ni-BDP exhibits a high proton conductivity of 2.22×10-3  S cm-1 at 80 °C and approximately 97 % relative humidity.

15.
Inorg Chem ; 56(4): 2188-2197, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28165753

RESUMO

Three new water-stable In(III)-based metal-organic frameworks, namely, [In3(TTTA)2(OH)3(H2O)]·(DMA)3 (BUT-70, DMA = N,N-dimethylacetamide), [In3(TTTA)2(CH3O)3] (BUT-70A), and [In3(TTTA)2(OH)3] (BUT-70B), with rod-shaped secondary building units (SBUs) and an new acrylate-based ligand, (2E,2'E,2″E)-3,3',3″-(2,4,6-trimethylbenzene-1,3,5-triyl)-triacrylate (TTTA3-) were obtained and structurally characterized. BUT-70A and -70B were generated in a single-crystal to single-crystal transformation fashion from BUT-70 through guest exchange followed by their removal. The solvents used for guest exchange were methanol and dichloromethane, respectively. Single-crystal structure analyses show that the guest exchange and removal process is accompanied by the substitution of coordinated water molecules of In(III) centers with uncoordinated carboxylate O atoms of TTTA3- ligands. Moreover, hydroxyl groups bridging two In(III) centers are also replaced by methoxyl groups in the transformation from BUT-70 to -70A. Overall, three metal-organic frameworks (MOFs) are constructed by infinite chains consisting of corner-sharing InO4(OR)2 (R = H or Me) octahedral entities, which are interconnected by TTTA3- ligands to form three-dimensional frameworks. Unlike most reported MOFs with infinite chains as SBUs, such as well-known MIL-53 and M-MOF-74, which have one-dimensional channels along the chain direction, the BUT-70 series contain two-dimensional intersecting channels. The Brunauer-Emmett-Teller surface area and pore volume of BUT-70A were estimated to be 460 m2 g-1 and 0.18 cm3 g-1, respectively, which are obviously lower than those of BUT-70B (695 m2 g-1 and 0.29 cm3 g-1). Gas adsorption experiments demonstrated that BUT-70A and -70B are able to selectively adsorb C2H2 over CO2 and CH4. At 1 atm and 298 K, BUT-70A uptakes 3.1 mmol g-1 C2H2, which is 3.6 times that of the CO2 uptake and 7.2 times that of the CH4 uptake. Compared with BUT-70A, BUT-70B presents an even higher C2H2 uptake of 3.9 mmol g-1 at the same conditions, but slightly lower Ideal Adsorbed Solution Theory C2H2/CO2 and C2H2/CH4 selectivities.

16.
Fish Shellfish Immunol ; 60: 326-333, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27919757

RESUMO

The probiotic properties of Bacillus subtilis HAINUP40 isolated from the aquatic environment, and the effects of dietary administration of B. subtilis HAINUP40 on the growth performance, intestinal probiotic recovery, digestive enzyme activities, innate immunity and disease resistance of tilapia (Oreochromis niloticus) were evaluated. The probiotic properties investigated include tolerance to simulated gastrointestinal stress, auto-aggregation, cell surface hydrophobicity and extracellular enzyme production. The cell number of B. subtilis changed little after 4 h in simulated gastric fluid at pH = 2.0, 3.0, 4.0 and simulated intestinal fluid at pH = 6.8.B.subtilis HAINUP40 revealed strong auto-aggregation property (34.6-87.0%) after 24 h incubation period. It exhibited significant cell surface hydrophobicity in xylene (28.8%) and chloroform (41.3%) and produced extracellular proteases and amylase. After tilapia (mean weight = 95 ± 8 g) were fed with a diet containing 108 cfu/g B. subtilis HAINUP40, their final body weight, percent weight gain (PWG), specific growth rate (SGR), total antioxidant capacity (T-AOC) and serum superoxide dismutase (SOD) increased significantly (p < 0.05) after 8 weeks; feed conversion rate (FCR) is significantly lower (p < 0.05) after 8 weeks; the protease and amylase activity in the digestive tract increased significantly (p < 0.05) after 4 and 8 weeks; and respiratory bursts and serum lysozyme activity increased significantly (p < 0.05) after 2 weeks. Moreover, being challenged with pathogenic Streptococcus agalactiae for 2 weeks, the relative percent survival (RPS%) is 52.94%. The results of this study strongly suggest that dietary supplement of B. subtilis HAINUP40 can effectively enhances the growth performance, immune response, and disease resistance of Nile tilapia.


Assuntos
Bacillus subtilis/química , Ciclídeos/fisiologia , Dieta/veterinária , Resistência à Doença , Doenças dos Peixes/imunologia , Probióticos , Infecções Estreptocócicas/veterinária , Ração Animal/análise , Animais , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/imunologia , Doenças dos Peixes/microbiologia , Distribuição Aleatória , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/fisiologia
17.
Antimicrob Agents Chemother ; 59(8): 4845-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033735

RESUMO

The clinical development of FtsZ-targeting benzamide compounds like PC190723 has been limited by poor drug-like and pharmacokinetic properties. Development of prodrugs of PC190723 (e.g., TXY541) resulted in enhanced pharmaceutical properties, which, in turn, led to improved intravenous efficacy as well as the first demonstration of oral efficacy in vivo against both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Despite being efficacious in vivo, TXY541 still suffered from suboptimal pharmacokinetics and the requirement of high efficacious doses. We describe here the design of a new prodrug (TXA709) in which the Cl group on the pyridyl ring has been replaced with a CF3 functionality that is resistant to metabolic attack. As a result of this enhanced metabolic stability, the product of the TXA709 prodrug (TXA707) is associated with improved pharmacokinetic properties (a 6.5-fold-longer half-life and a 3-fold-greater oral bioavailability) and superior in vivo antistaphylococcal efficacy relative to PC190723. We validate FtsZ as the antibacterial target of TXA707 and demonstrate that the compound retains potent bactericidal activity against S. aureus strains resistant to the current standard-of-care drugs vancomycin, daptomycin, and linezolid. These collective properties, coupled with minimal observed toxicity to mammalian cells, establish the prodrug TXA709 as an antistaphylococcal agent worthy of clinical development.


Assuntos
Proteínas de Bactérias/metabolismo , Benzamidas/farmacologia , Benzamidas/farmacocinética , Proteínas do Citoesqueleto/metabolismo , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Células Cultivadas , Daptomicina/farmacologia , Cães , Meia-Vida , Humanos , Linezolida/farmacologia , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Piridinas/farmacologia , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Tiazóis/farmacologia , Vancomicina/farmacologia
18.
J Colloid Interface Sci ; 675: 391-400, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38972126

RESUMO

The quest for effective and sustainable electrocatalysts for hydrogen evolution is crucial in advancing the widespread use of H2. In this study, we utilized silkworm cocoons as the source material to produce porous N-doped carbon (PNCC) substrates through a process involving degumming and annealing. Subsequently, NiCoP nanorod (NiCoP@PNCC) is deposited onto the substrates via a simple impregnation and calcination method to enhance the catalytic performance for the hydrogen evolution reaction (HER). The optimal spacing between the silk fibers of PNCC facilitates longitudinal growth, increases the active surface area, and balances the adsorption and desorption of reaction intermediates, thereby accelerating HER kinetics. Consequently, NiCoP@PNCC demonstrates impressive performance, with 44 mV overpotential to achieve a current density of 10 mA cm-2. Additionally, density functional theory (DFT) calculations reveal that the electronic structure and energy band of NiCoP@PNCC can be modified through the doping of elements such as B, C, N, O, F, and S. In addition, with the electronegativity enhancement of the doping elements, the interaction between Co atoms in NiCoP@PNCC and O atoms in adsorbed H2O molecules gradually enhanced, which is conducive to the dissociation of water in alkaline solution. This research introduces a novel approach for fine-tuning the catalytic activity of transition metal phosphides.

19.
AIDS Rev ; 26(1): 32-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530710

RESUMO

Compared to either HIV or hepatitis B virus (HBV) monoinfected individuals, HIV/HBV-coinfected individuals have a decreased probability of spontaneous HBV clearance and a greater risk of developing chronic liver damage and a faster progression to cirrhosis and hepatocellular carcinoma. This manuscript attempts to provide a comprehensive review of the landscape of current HIV/HBV coinfection research with a focus on the intricate interactions between these two viruses. Our review will help understand the disease dynamics of HIV/HBV coinfection and has important implications for designing public health strategies.


Assuntos
Carcinoma Hepatocelular , Coinfecção , Infecções por HIV , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Cirrose Hepática
20.
J Colloid Interface Sci ; 671: 692-701, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38823110

RESUMO

Lithium-sulfur (Li-S) batteries exhibit superior theoretical capacity and energy density but are still hindered by the sluggish redox conversion kinetic of lithium polysulfides arising from the significant desolvation barrier, especially under high current density or low-temperature environments. Herein, a two-dimensional (2D) porous graphitic phase carbon nitride/MXene (CN-MX) heterostructure with intrinsic defects was designed via electrostatic adherence and in-situ thermal polycondensation. In the design, the defect-rich CN with abundant catalytic activity and porous structure could efficiently facilitate the lithium polysulfides capture, the dissociation of solvated lithium-ion (Li+), and fast Li+ diffusion. Concurrently, 2D MXene nanosheets with high electronic conductivity could act as charge transport channels and provide electrochemical active sites for sulfur redox reactions. The Li-S cells with CN-MX heterostructure modified separator demonstrated uncommon rate performance (945 mAh/g at 4.0 C) and satisfactory areal capacity (5.5 mAh cm-2 at 0.2 C). Most remarkably, even at 0 °C, the assembled Li-S batteries performed favorable cycle stability (91.6% capacity retention after 100 cycles at 0.5 C) and outstanding rate performance (695 mAh/g at 2.0 C), and superior high loading performance (5.1 mAh cm-2 at 0.1 C). This work offers exciting new insights to enable Li-S batteries to operate in extreme environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA