Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lipids Health Dis ; 13: 47, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24621278

RESUMO

BACKGROUND: Studies investigating the association between the apolipoprotein E (APOE) gene polymorphism and the risk of intracerebral hemorrhage (ICH) have reported conflicting results. We here performed a meta-analysis based on the evidence currently available from the literature to make a more precise estimation of this relationship. METHODS: Published literature from the National Library of Medline and Embase databases were retrieved. Odds ratio (OR) and 95% confidence interval (CI) were calculated in fixed- or random-effects models when appropriate. Subgroup analyses were performed by race. RESULTS: This meta-analysis included 11 case-control studies, which included 1,238 ICH cases and 3,575 controls. The combined results based on all studies showed that ICH cases had a significantly higher frequency of APOE ϵ4 allele (OR= 1.42, 95% CI= 1.21,1.67, P<0.001). In the subgroup analysis by race, we also found that ICH cases had a significantly higher frequency of APOE ϵ4 allele in Asians (OR= 1.52, 95% CI= 1.20,1.93, P<0.001) and in Caucasians (OR= 1.34, 95% CI= 1.07,1.66, P=0.009). There was no significant relationship between APOE ϵ2 allele and the risk of ICH. CONCLUSION: Our meta-analysis suggested that APOE ϵ4 allele was associated with a higher risk of ICH.


Assuntos
Apolipoproteínas E/genética , Hemorragia Cerebral/genética , Estudos de Casos e Controles , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Polimorfismo Genético , Isoformas de Proteínas/genética , Fatores de Risco
2.
PLoS One ; 18(12): e0295807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096147

RESUMO

In the application of driverless technology, current traffic sign recognition methods are susceptible to the influence of ambient light interference, target size changes and complex backgrounds, resulting in reduced recognition accuracy. To address these challenges, this study introduces an optimisation algorithm called ETSR-YOLO, which is based on the YOLOv5s algorithm. First, this study improves the path aggregation network (PANet) of YOLOv5s to enhance multi-scale feature fusion by generating an additional high-resolution feature layer to improve the recognition of YOLOv5s for small-sized objects. Second, the study introduces two improved C3 modules that aim to suppress background noise interference and enhance the feature extraction capabilities of the network. Finally, the study uses the Wise-IoU (WIoU) function in the post-processing stage to improve the learning ability and robustness of the algorithm to different samples. The experimental results show that ETSR-YOLO improves mAP@0.5 by 6.6% on the Tsinghua-Tencent 100K (TT100K) dataset and by 1.9% on the CSUST Chinese Traffic Sign Detection Benchmark 2021 (CCTSDB2021) dataset. In the experiments conducted on the embedded computing platform, ETSR-YOLO demonstrates a short average inference time, thereby affirming its capability to deliver dependable traffic sign detection for intelligent vehicles operating in real-world traffic scenes. The source code and test results of the models used in this study are available at https://github.com/cbrook16/ETSR-YOLO.

3.
Tree Physiol ; 40(12): 1778-1791, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32705117

RESUMO

The multisubunit Elongator complex plays key roles in transcription by interacting with RNA polymerase II and chromatin modeling. Kti proteins have been identified as the auxiliary protein for the Elongator complex. However, our knowledge of Kti proteins in woody plants remains limited. In this study, in total 16 KTI gene homologs were identified in Populus trichocarpa. Among them, the two KTI12 candidates were named PtKTI12A and PtKTI12B. Although PtKTI12A and PtKTI12B were largely different in gene expression level and tissue specificity, both genes were induced by heat and drought stresses. PtKTI12A and PtKTI12B RNAi transgenic poplar plants showed reduced levels of modified nucleosides, in particular 5-carbamoylmethyluridine and 5-methoxycarbonylmethyl-2-thiouridine. Meanwhile, their tolerance to drought was improved when subjected to withdrawal of watering. Also, the protein products of PtKTI12A and PtKTI12B had similar subcellular localization and predicted tertiary structure. The results suggest that Kti12 proteins are involved in tRNA wobble uridine modification, stress response and drought stress tolerance in hybrid poplar.


Assuntos
Populus , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Estresse Fisiológico/genética , Uridina
4.
Bioresour Technol ; 203: 325-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748046

RESUMO

In this study, total 19 straw samples from four Brassica species were determined with a diverse cell wall composition and varied biomass enzymatic digestibility under sulfuric acid or lime pretreatment. Correlation analysis was then performed to detect effects of cell wall compositions and wall polymer features (cellulose crystallinity, hemicellulosic monosaccharides and lignin monomers) on rapeseeds biomass digestibility. As a result, coniferyl alcohol (G-lignin) showed a strongly negative effect on biomass saccharification, whereas hemicellulosic monosaccharides (fucose, galactose, arabinose and rhamnose) were positive factors on lignocellulose digestions. Notably, chemical analyses of four typical pairs of samples indicated that hemicellulosic monosaccharides and G-lignin may coordinately influence biomass digestibility in rapeseeds. In addition, Brassica napus with lower lignin content exhibited more efficiency on both biomass enzymatic saccharification and ethanol production, compared with Brassica junjea. Hence, this study has at first time provided a genetic strategy on cell wall modification towards bioenergy rapeseed breeding.


Assuntos
Brassica rapa/química , Monossacarídeos/química , Biocombustíveis , Biomassa , Compostos de Cálcio/química , Parede Celular/química , Celulose/análise , Conservação de Recursos Energéticos , Etanol/metabolismo , Lignina/química , Lignina/metabolismo , Monossacarídeos/metabolismo , Óxidos/química , Ácidos Sulfúricos/química
5.
Toxins (Basel) ; 8(10)2016 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-27669304

RESUMO

Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 µg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.


Assuntos
Microbiologia do Solo , Tricotecenos/metabolismo , Aerobiose , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/análise , DNA Ribossômico/análise , Compostos de Epóxi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA