Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 85: 84-93, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047895

RESUMO

Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from S. cerevisiae and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in S. cerevisiae. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.


Assuntos
Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sesquiterpenos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Peroxissomos/metabolismo , Peroxissomos/genética , Sesquiterpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Transporte Proteico
2.
Fish Shellfish Immunol ; 137: 108778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37130474

RESUMO

MicroRNAs (miRNAs) are a class of non-coding RNAs with regulatory functions in many cellular processes, including immune defense. In this study, we identified novel-m0089-3p, a novel miRNA with unknown function, in the teleost fish Japanese flounder (Paralichthys olivaceus) and investigated its immune function. Novel-m0089-3p was found to target the autophagy-associated gene ATG7 and negatively regulate ATG7 expression via interaction with the 3' UTR of ATG7. During the infection of the bacterial pathogen Edwardsiella tarda, novel-m0089-3p expression was induced in flounder, which in turn repressed ATG7 expression. Overexpression of novel-m0089-3p or blocking ATG7 expression inhibited autophagy and promoted the intracellular replication of E. tarda. Novel-m0089-3p overexpression, as well as E. tarda infection, activated NF-κB and stimulated the expression of inflammatory cytokines. Together these results revealed an important role of novel-m0089-3p in response to bacterial infection.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , MicroRNAs , Animais , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Regulação da Expressão Gênica , Autofagia , Edwardsiella tarda/fisiologia , Proteínas de Peixes
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36633543

RESUMO

Sharomyces cerevisiae is currently one of the most important foreign gene expression systems. S. cerevisiae is an excellent host for high-value metabolite cell factories due to its advantages of simplicity, safety, and nontoxicity. A promoter, as one of the basic elements of gene transcription, plays an important role in regulating gene expression and optimizing metabolic pathways. Promoters control the direction and intensity of transcription, and the application of promoters with different intensities and performances will largely determine the effect of gene expression and ultimately affect the experimental results. Due to its significant role, there have been many studies on promoters for decades. While some studies have explored and analyzed new promoters with different functions, more studies have focused on artificially modifying promoters to meet their own scientific needs. Thus, this article reviews current research on promoter engineering techniques and related natural promoters in S. cerevisiae. First, we introduce the basic structure of promoters and the classification of natural promoters. Then, the classification of various promoter strategies is reviewed. Finally, by grouping related articles together using various strategies, this review anticipates the future development direction of promoter engineering.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Redes e Vias Metabólicas , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética
4.
Int J Toxicol ; 41(1): 5-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045746

RESUMO

The objective of this study was to investigate the effect of liquiritigenin (LQ) on breast cancer (BC) and its mechanism. After BC cell lines and normal mammary epithelial cells were cultured with LQ, CCK-8, and Scratch, Transwell assays and flow cytometry were applied to test the effect of LQ on cell proliferation, migration, invasion, and apoptosis. The effect of LQ on the expression of microRNA-383-5p (miR-383-5p) and connective tissue growth factor (CTGF) was measured by qRT-PCR and Western blotting. Bioinformatics prediction was used to evaluate the binding relationship between miR-383-5p and CTGF, which was verified by dual-luciferase reporter assay. After miR-383-5p and/or CTGF expression was upregulated through cell transfection, the relationship between miR-383-5p and CTGF, as well as their effects on BC, was further assessed. The results showed that LQ can significantly inhibit CTGF expression and the proliferative, migratory, and invasive abilities of BC cells, while facilitating apoptosis of BC cells and miR-383-5p expression. The inhibiting effect of LQ was dose-dependently enhanced in BC cells. Dual-luciferase reporter assay verified that miR-383-5p targeted CTGF. CTGF expression was inversely regulated by miR-383-5p. CTGF upregulation repressed the suppressive effect of miR-385-5p on BC cell development. In conclusion, LQ can inhibit CTGF expression by upregulating miR-383-5p, thereby inhibiting proliferative, migratory, and invasive abilities and promoting apoptosis of BC cells.


Assuntos
Neoplasias da Mama , Fator de Crescimento do Tecido Conjuntivo , Flavanonas , MicroRNAs , Neoplasias da Mama/genética , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Regulação para Cima/efeitos dos fármacos
5.
BMC Oral Health ; 22(1): 650, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578061

RESUMO

BACKGROUND: Osteogenesis of lateral window sinus elevation surgery is the key to placement of the subsequent implant, excessive collapse of the sub-antral space may adversely affect long-term stability of implants. At present, few studies focus on the influence of the contact area of the sub-antral space on osteogenesis. This study evaluated whether the change in the contact area of the sub-antral space with maxillary sinus bone and the Schneiderian membrane can affect osteogenesis. METHODS: Cone beam computed tomography (CBCT) images were collected of patients requiring maxillary sinus floor elevation (residual bone height < 6 mm) for standard-length implant placement before surgery, after surgery, and at 6-month follow-up visits. The postoperative sub-antral space volume (V1) and surface area (S1), and the remaining volume after six months of healing (V2) were measured. Then, the contact area of sub-antral space with maxillary sinus bone (Sbc) and the Schneiderian membrane (Smc), the absorbed volume during healing (Va), and the percentage of remaining volume (V2%) and absorbed volume (Va%) were calculated. The correlation between anatomical parameters was analyzed using multiple linear regression. RESULTS: A total of 62 maxillary sinuses from 56 patients were augmented, of which 57 were considered for the final analysis (5 withdrew due to perforation). Multiple linear regression results demonstrated that Sbc was significantly positively correlated with Va (ß coefficient = 0.141, p < 0.01) without correlation between Smc and Va (ß coefficient = - 0.046, p = 0.470). There was a positive correlation between Sbc and V2% (ß coefficient = 2.269, p < 0.05). CONCLUSIONS: This study confirmed that the size of the Sbc in lateral window sinus elevation surgery affected osteogenesis after six months of healing. Clinicians should assess the sinus contour type preoperatively, then consider whether it is necessary to expand the range of the Schneiderian membrane elevation to avoid excessive collapse of the sub-antral space. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR), ChiCTR2200057924. Registered 22 March 2022-Retrospectively registered.


Assuntos
Osteogênese , Levantamento do Assoalho do Seio Maxilar , Humanos , Levantamento do Assoalho do Seio Maxilar/métodos , Estudos Prospectivos , Mucosa Nasal , Implantação Dentária Endóssea/métodos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 1033-1038, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-36443048

RESUMO

Objective: To explore the clinical characteristics of early-onset preeclampsia (PE) combined with HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome, and to improve the capacity for early diagnosis and treatment. Methods: Pregnant women who received treatment at Women's Hospital, School of Medicine, Zhejiang University between March 2014 and October 2021 were retrospectively enrolled. There were two patient groups, the HELLP group consisting of 70 cases of early-onset PE combined with HELLP syndrome and the control group consisting of 140 cases of early-onset PE without HELLP syndrome. Patients in the two groups were matched by age. The general clinical data, characteristics of pathogenesis, and laboratory findings of the patients were collected and the perinatal outcomes of the two groups were compared and analyzed. Results: 1) There was no significant difference in gravidity, pre-delivery body mass index, years from the last delivery, and family history of diabetes mellitus and hypertension between the two groups. 2) The highest systolic blood pressure, highest diastolic blood pressure during the pregnancy, and the postpartum hospital length-of-stay ( P<0.001) in the HELLP group were higher than those in the control group. The gestational age at the time of the diagnosis of PE ( P=0.001) and the gestational age at delivery ( P<0.001) in the HELLP group were significantly earlier than those in the control group. The difference between the gestational age at the time of blood pressure elevation and that at the time of delivery ( P<0.001), and the gestational age difference between the diagnosis of early-onset PE and delivery ( P=0.027) were lower than those in the control group. The incidences of eclampsia in the HELLP group, pleural effusion, and ascites were higher than those of the control group. 3) Neonates in the HELLP group had a higher probability of being admitted to NICU and developing cyanotic/pale asphyxia ( P<0.001). 4) Before the termination of pregnancy, the HELLP group had higher levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatinine, urea, random glucose, lactate dehydrogenase, activated partial thromboplastin time, and the last 24-hour urine protein quantification than those of the control group (all P<0.05), while the platelet (PLT) counts were significantly lower than those of the control group ( P<0.001). 5) There was a significant correlation between PLT counts in the second trimester and the onset of HELLP syndrome ( P=0.006), with the area under the ROC curve reaching 0.746 (95% CI: 0.596-0.897). Conclusion: In comparison with early-onset PE patients without HELLP syndrome, patients with early-onset PE combined with HELLP syndrome are diagnosed for PE at an earlier gestational age, have higher blood pressure, are more prone to serious pregnancy complications, and have longer postpartum hospital length-of-stay and worse neonatal outcomes. Close monitoring of PLT counts of early-onset PE patients in the second trimester may help predict subsequent HELLP syndrome.


Assuntos
Síndrome HELLP , Hipertensão , Pré-Eclâmpsia , Gravidez , Recém-Nascido , Feminino , Humanos , Síndrome HELLP/diagnóstico , Pré-Eclâmpsia/diagnóstico , Estudos Retrospectivos , Segundo Trimestre da Gravidez , Contagem de Plaquetas
7.
Korean J Physiol Pharmacol ; 25(4): 261-272, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187945

RESUMO

Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKß, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

8.
Neurochem Res ; 43(10): 1963-1977, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136162

RESUMO

Mitochondrial dysfunction has been acknowledged as the key pathogenic mechanism in cerebral ischemia-reperfusion (IR) injury. Mitophagy is the protective system used to sustain mitochondrial homeostasis. However, the upstream regulator of mitophagy in response to brain IR injury is not completely understood. Nuclear receptor subfamily 4 group A member 1 (NR4A1) has been found to be associated with mitochondrial protection in a number of diseases. The aim of our study is to explore the functional role of NR4A1 in cerebral IR injury, with a particular focus on its influence on mitophagy. Wild-type mice and NR4A1-knockout mice were used to generate cerebral IR injury in vivo. Mitochondrial function and mitophagy were detected via immunofluorescence assays and western blotting. Cellular apoptosis was determined via MTT assays, caspase-3 activity and western blotting. Our data revealed that NR4A1 was significantly increased in the reperfused brain tissues. Genetic ablation of NR4A1 reduced the cerebral infarction area and repressed neuronal apoptosis. The functional study demonstrated that NR4A1 modulated cerebral IR injury by inducing mitochondrial damage. Higher NR4A1 promoted mitochondrial potential reduction, evoked cellular oxidative stress, interrupted ATP generation, and initiated caspase-9-dependent apoptosis. Mechanistically, NR4A1 induced mitochondrial damage by disrupting Mfn2-mediated mitophagy. Knockdown of NR4A1 elevated Mfn2 expression and therefore reversed mitophagic activity, sending a prosurvival signal for mitochondria in the setting of cerebral IR injury. Further, we demonstrated that NR4A1 modulated Mfn2 expression via the MAPK-ERK-CREB signaling pathway. Blockade of the ERK pathway could abrogate the permissive effect of NR4A1 deletion on mitophagic activation, contributing to neuronal mitochondrial apoptosis. Overall, our results demonstrate that the pathogenesis of cerebral IR injury is closely associated with a drop in protective mitophagy due to increased NR4A1 through the MAPK-ERK-CREB signaling pathway.


Assuntos
Isquemia Encefálica/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitofagia/fisiologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais/fisiologia
9.
ACS Appl Mater Interfaces ; 16(26): 33053-33069, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899855

RESUMO

The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.


Assuntos
Antibacterianos , Regeneração Óssea , Cobre , Exossomos , Ácido Hialurônico , Hidrogéis , Osteogênese , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Osteogênese/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Camundongos , Cobre/química , Cobre/farmacologia , Regeneração Óssea/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Ligamento Periodontal/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Periodontite/tratamento farmacológico , Periodontite/patologia , Periodontite/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
10.
Curr Neuropharmacol ; 22(10): 1672-1696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362904

RESUMO

Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Animais , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Metabolismo Energético/fisiologia , Astrócitos/metabolismo , Neuroglia/metabolismo , Microglia/metabolismo , Reprogramação Metabólica
11.
J Cereb Blood Flow Metab ; 44(6): 857-880, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420850

RESUMO

Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.


Assuntos
AVC Isquêmico , Humanos , AVC Isquêmico/terapia , AVC Isquêmico/fisiopatologia , Fenômeno de não Refluxo/etiologia , Fenômeno de não Refluxo/fisiopatologia , Animais , Procedimentos Endovasculares/métodos , Microcirculação , Circulação Cerebrovascular/fisiologia
12.
Nanomaterials (Basel) ; 14(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39120370

RESUMO

This manuscript describes the synthesis of green long afterglow nanophosphors SrAl2O4:Eu2+, Nd3+ using the combustion process. The study encompassed the photoluminescence behavior, elemental composition, chemical valence, morphology, and phase purity of SrAl2O4:Eu2+, Nd3+ nanoparticles. The results demonstrate that after introducing Eu2+ into the matrix lattice, it exhibits an emission band centered at 508 nm when excited by 365 nm ultraviolet light, which is induced by the 4f65d1→4f7 transition of Eu2+ ions. The optimal doping concentrations of Eu2+ and Nd3+ were determined to be 2% and 1%, respectively. Based on X-ray diffraction (XRD) analysis, we have found that the physical phase was not altered by the doping of Eu2+ and Nd3+. Then, we analyzed and compared the quantum yield, fluorescence lifetime, and afterglow decay time of the samples; the co-doped ion Nd3+ itself does not emit light, but it can serve as an electron trap center to collect a portion of the electrons produced by the excitation of Eu2+, which gradually returns to the ground state after the excitation stops, generating an afterglow luminescence of about 15 s. The quantum yields of SrAl2O4:Eu2+ and SrAl2O4:Eu2+, Nd3+ phosphors were 41.59% and 10.10% and the fluorescence lifetimes were 404 ns and 76 ns, respectively. In addition, the Eg value of 4.98 eV was determined based on the diffuse reflectance spectra of the material, which closely matches the calculated bandgap value of SrAl2O4. The material can be combined with polyacrylic acid to create optical anti-counterfeiting ink, and the butterfly and ladybug patterns were effectively printed through screen printing; this demonstrates the potential use of phosphor in the realm of anti-counterfeiting printing.

13.
Eur J Pharmacol ; 969: 176303, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211715

RESUMO

Eldecalcitol (ED-71), a novel active form of vitamin D, shows potential in treating osteoporosis. However, its underlying mechanisms of action remain to be determined. This study aimed to investigate the effect of ED-71 on bone regeneration and to illustrate its mode of action. The in-vitro model was developed using rat primary osteoblasts cultured under high-glucose conditions, and these cells were treated with ED-71. Additionally, an in vivo model of cranial bone defects was established in type 2 diabetic rats, and ED-71 was administered by gavage. The results demonstrated that ED-71 prevented osteoblast cell death, enhanced rat primary osteoblasts' osteogenic capacity, and attenuated the overexpression of hypoxia-inducible factor 1α (HIF1α) induced by high glucose levels. Furthermore, ED-71 increased glutathione peroxidase 4 (GPX4) levels and inhibited ferroptosis in response to hyperglycemic stimulation. Notably, interference with the HIF1α activator and ferroptosis activator Erastin significantly reduced the therapeutic effects of edetate osteolysis. These findings were further tested in vivo experiments. These results suggest that ED-71 activates the HIF1α pathway in vivo and in vitro, effectively relieving the ferroptosis induced by high glucose. Significantly, ED-71 may improve osteogenic disorders caused by diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Vitamina D/análogos & derivados , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Vitamina D/metabolismo , Osteoblastos/metabolismo , Regeneração Óssea , Glucose/metabolismo
14.
Quant Imaging Med Surg ; 14(5): 3302-3311, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720836

RESUMO

Background: The parietal pleural adhesion/invasion of lung cancer can contribute substantially to poor prognosis and difficulty in surgery. The value of ultrasound in evaluating the parietal pleural adhesion or invasion (pleural adhesion/invasion) of lung cancer remains uncertain. This study investigated the value of B-mode ultrasound and contrast-enhanced ultrasound (CEUS) in diagnosing parietal pleural adhesion/invasion of subpleural lung cancer. Methods: The study animals included 40 male New Zealand white rabbits. A rabbit subpleural lung cancer model was constructed by injecting VX2 tumor tissue under ultrasound guidance. In the 1-3 weeks after subpleural lesion formation, parietal pleural adhesion/invasion of the largest subpleural lesion was evaluated with B-mode ultrasound and CEUS by two sonographers. The parietal pleural adhesion/invasion was also determined using the gold standard method of findings from anatomical and pathological examination. Results: Ultimately, 34 rabbits were subjected to complete ultrasonic evaluation. There were 20 and 14 cases with and without parietal pleural adhesion/invasion, respectively, as confirmed by anatomical and pathological evaluations. The diagnostic sensitivity, specificity, and accuracy of sonographer 1 using B-mode ultrasound were 50.0% [95% confidence interval (CI): 26.0-74.0%], 100%, and 70.6% (95% CI: 54.5-86.7%), respectively; for CEUS, they were 90.0% (95% CI: 75.6-100.0%), 100.0%, and 94.1% (95% CI: 85.8-100.0%), respectively. The diagnostic sensitivity, specificity, and accuracy of sonographer 2 using B-mode ultrasound were 45.0% (95% CI: 21.1-68.9%), 92.9% (95% CI: 77.5-100.0%), and 64.7% (95% CI: 47.8-81.6%), respectively; for CEUS, they were 85.0% (95% CI: 67.9-100.0%), 100.0%, and 91.2% (95% CI: 81.1-100.0%), respectively. The diagnostic accuracy of sonographer 1 was higher with CEUS than with B-mode ultrasound, but not significantly so (94.1% vs. 70.6%; P=0.08). The diagnostic accuracy of sonographer 2 was significantly higher with CEUS than with B-mode ultrasound (91.2% vs. 64.7%; P=0.03). The interrater reliability was higher for CEUS than for B-mode ultrasound (κ=0.941 vs. κ =0.717). Conclusions: Based on an animal model, B-mode ultrasound and CEUS both exhibited good diagnostic efficacy and interrater reliability in evaluating parietal pleural adhesion/invasion of subpleural lung cancer although CEUS outperformed B-mode ultrasound for both measures.

15.
Genes (Basel) ; 14(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37239318

RESUMO

MicroRNAs (miRNAs) are small RNA molecules that function in the post-transcriptionally regulation of the expression of diverse genes, including those involved in immune defense. Edwardsiella tarda can infect a broad range of hosts and cause severe disease in aquatic species, including Japanese flounder (Paralichthys olivaceus). In this study, we examined the regulation mechanism of a flounder miRNA, pol-miR-155, during the infection of E. tarda. Pol-miR-155 was identified to target flounder ATG3. Overexpression of pol-miR-155 or knockdown of ATG3 expression suppressed autophagy and promoted the intracellular replication of E. tarda in flounder cells. Overexpression of pol-miR-155 activated the NF-κB signaling pathway and further promoted the expression of downstream immune related genes of interleukin (IL)-6 and IL-8. These results unraveled the regulatory effect of pol-miR-155 in autophagy and in E. tarda infection.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , MicroRNAs , Animais , Edwardsiella tarda/genética , Doenças dos Peixes/genética , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , MicroRNAs/genética , MicroRNAs/metabolismo
16.
Bone ; 167: 116643, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513279

RESUMO

The mechanism of the impact of hyperlipidemia on bone tissue homeostasis is unclear, and the role of lipophagy is yet to be investigated. This study investigated changes in lipophagy and osteogenesis levels under hyperlipemic conditions and explored the effects of lipophagy on bone regeneration. In vivo, femurs of mice with diet-induced moderate hyperlipidemia were ground out with a ball drill to create defects. In vitro, mouse osteoblast cell lines were grown in two different concentrations of the high-fat medium. We found that at hyperphysiological of lipid conditions, activation of lipophagy restored osteoblast function in a way, and similar results were observed in mice with diet-induced hyperlipidemia. Still, at suprahyperphysiological concentrations of lipid culture, the activation of lipophagy further inhibited osteogenesis, and inhibition of autophagy instead promoted osteogenesis to a small extent. These results demonstrate that lipophagy functions differently in diverse high-fat environments, suggesting that cellular and organismal changes in response to high-fat stimuli are dynamic. This may provide new ideas for improving bone dysfunction caused by lipid metabolism disorders.


Assuntos
Hiperlipidemias , Metabolismo dos Lipídeos , Animais , Camundongos , Metabolismo dos Lipídeos/fisiologia , Osteogênese , Autofagia , Lipídeos
17.
Int Immunopharmacol ; 120: 110308, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37192551

RESUMO

Inflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties. MaR1 is synthesized by macrophages (Mφs) and omega-3 fatty acids, and it may have the potential to promote bone homeostasis and treat inflammatory bone diseases. MaR1 has been found to stimulate osteoblast proliferation through leucine-rich repeat G protein-coupled receptor 6 (LGR6). It also activates Mφ phagocytosis and M2-type polarization, which helps to control the immune system. MaR1 can regulate T cells to exert anti-inflammatory effects and inhibit neutrophil infiltration and recruitment. In addition, MaR1 is involved in antioxidant signaling, including nuclear factor erythroid 2-related factor 2 (NRF2). It has also been found to promote the autophagic behavior of periodontal ligament stem cells, stimulate Mφs against pathogenic bacteria, and regulate tissue regeneration and repair. In summary, this review provides new information and a comprehensive overview of the critical roles of MaR1 in inflammatory bone diseases, indicating its potential as a therapeutic approach for managing skeletal metabolism and inflammatory bone diseases.


Assuntos
Doenças Ósseas , Inflamação , Humanos , Inflamação/tratamento farmacológico , Macrófagos , Fagocitose , Anti-Inflamatórios/farmacologia , Doenças Ósseas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/metabolismo
18.
Bioengineering (Basel) ; 10(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37237630

RESUMO

In this article, we report a method for preparing an immobilized bacterial agent of petroleum-degrading bacteria Gordonia alkanivorans W33 by combining high-density fermentation and bacterial immobilization technology and testing its bioremediation effect on petroleum-contaminated soil. After determining the optimal combination of MgCl2, CaCl2 concentration, and culture time in the fermentation conditions by conducting a response surface analysis, the cell concentration reached 7.48 × 109 CFU/mL by 5 L fed-batch fermentation. The W33-vermiculite-powder-immobilized bacterial agent mixed with sophorolipids and rhamnolipids in a weight ratio of 9:10 was used for the bioremediation of petroleum-contaminated soil. After 45 days of microbial degradation, 56.3% of the petroleum in the soil with 20,000 mg/kg petroleum content was degraded, and the average degradation rate reached 250.2 mg/kg/d.

19.
Front Physiol ; 14: 1136973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875028

RESUMO

Soft tissue seal around implant prostheses is considered the primary barrier against adverse external stimuli and is a critical factor in maintaining dental implants' stability. Soft tissue seal is formed mainly by the adhesion of epithelial tissue and fibrous connective tissue to the transmembrane portion of the implant. Type 2 diabetes mellitus (T2DM) is one of the risk factors for peri-implant inflammation, and peri-implant disease may be triggered by dysfunction of the soft tissue barrier around dental implants. This is increasingly considered a promising target for disease treatment and management. However, many studies have demonstrated that pathogenic bacterial infestation, gingival immune inflammation, overactive matrix metalloproteinases (MMPs), impaired wound healing processes and excessive oxidative stress may trigger poor peri-implant soft tissue sealing, which may be more severe in the T2DM state. This article reviews the structure of peri-implant soft tissue seal, peri-implant disease and treatment, and moderating mechanisms of impaired soft tissue seal around implants due to T2DM to inform the development of treatment strategies for dental implants in patients with dental defects.

20.
Cells ; 11(16)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010637

RESUMO

Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator produced from polyunsaturated fatty acids and is believed to have antioxidant and anti-inflammatory properties. The objective of this study was to estimate MaR1's impact on type 2 diabetic osteoporosis (T2DOP) and its pharmacological mode of action. An in vitro high-glucose model of the osteoblast cell line MC3T3-E1 was constructed and stimulated with MaR1. Type 2 diabetic rats were used to establish in vivo models of calvarial defects and were treated in situ with MaR1. The results revealed that, aside from preventing mortality and promoting the osteogenic capacity of MC3T3-E1 cells, MaR1 increased nuclear factor erythroid-2 related factor 2 (NRF2) signaling as well as the activity of glutathione peroxidase 4 (GPX4) and cystine-glutamate antiporter (SLC7A11) and caused the restraint of ferroptosis under hyperglycemic stimulation. However, the therapeutic impact of MaR1 was significantly diminished due to NRF2-siRNA interference and the ferroptosis activator Erastin. Meanwhile, these results were validated through in vivo experiments. These findings imply that MaR1 activated the NRF2 pathway in vivo and in vitro to alleviate high-glucose-induced ferroptosis greatly. More crucially, MaR1 might effectively reduce the risk of T2DOP.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ácidos Docosa-Hexaenoicos/farmacologia , Ferroptose , Osteoporose , Animais , Diabetes Mellitus Tipo 2/complicações , Glucose/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA