Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochem Biophys Res Commun ; 725: 150215, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38870845

RESUMO

Cardiac ischemia results in anaerobic metabolism and lactic acid accumulation and with time, intracellular and extracellular acidosis. Ischemia and subsequent reperfusion injury (IRI) lead to various forms of programmed cell death. Necroptosis is a major form of programmed necrosis that worsens cardiac function directly and also promotes inflammation by the release of cellular contents. Potential effects of increasing acidosis on programmed cell death and their specific components have not been well studied. While apoptosis is caspase-dependent, in contrast, necroptosis is mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1/3). In our study, we observed that at physiological pH = 7.4, caspase-8 inhibition did not prevent TNFα-induced cell death in mouse cardiac vascular endothelial cells (MVECs) but promoted necroptotic cell death. As expected, necroptosis was blocked by RIPK1 inhibition. However, at pH = 6.5, TNFα induced an apoptosis-like pattern which was inhibited by caspase-8 inhibition. Interestingly phosphorylation of necroptotic molecules RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL) was enhanced in an acidic pH environment. However, RIPK3 and MLKL phosphorylation was self-limited which may have limited their participation in necroptosis. In addition, an acidic pH promoted apoptosis-inducing factor (AIF) cleavage and nuclear translocation. AIF RNA silencing inhibited cell death, supporting the role of AIF in this cell death. In summary, our study demonstrated that the pH of the micro-environment during inflammation can bias cell death pathways by altering the function of necroptosis-related molecules and promoting AIF-mediated cell death. Further insights into the mechanisms by which an acidic cellular micro-environment influences these and perhaps other forms of regulated cell death, may lead to therapeutic strategies to attenuate IRI.


Assuntos
Apoptose , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Fator de Necrose Tumoral alfa , Animais , Concentração de Íons de Hidrogênio , Apoptose/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fator de Necrose Tumoral alfa/metabolismo , Caspase 8/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Células Cultivadas , Fosforilação , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674016

RESUMO

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Assuntos
Dinaminas , Rejeição de Enxerto , Transplante de Coração , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Camundongos , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Transplante de Coração/efeitos adversos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocôndrias/metabolismo , Células Endoteliais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Transdução de Sinais
3.
Am J Transplant ; 21(10): 3268-3279, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784431

RESUMO

Inflammation posttransplant is directly linked to cell death programs including apoptosis and necrosis. Cell death leads to the release of cellular contents which can promote inflammation. Targeting of these pathways should be an effective strategy to prevent transplant rejection. Toll-like receptor 3 (TLR3) is emerging as a major endogenous sensor of inflammation. In this study, we assessed the role of TLR3 on cell death and transplant rejection. We showed that TLR3 is highly expressed on mouse microvascular endothelial cell (ECs) and the endothelium of cardiac grafts. We demonstrated that TLR3 interacting with dsRNA or self-RNA triggered apoptosis and necroptosis in ECs. Interestingly, TLR3-induced necroptosis led mitochondrial damage. Inhibition of the mitochondrial membrane permeability molecule Cyclophilin D prevented necroptosis in ECs. In vivo, endothelium damage and activities of caspase-3 and mixed lineage kinase domain-like protein were inhibited in TLR3-/- cardiac grafts compared with C57BL/6 grafts posttransplant (n = 5, p < .001). Importantly, TLR3-/- cardiac grafts had prolonged survival in allogeneic BALB/c mice (mean survival = 121 ± 67 vs. 31 ± 6 days of C57BL/6 grafts, n = 7, p = .002). In summary, our study suggests that TLR3 is an important cell death inducer in ECs and cardiac grafts and thus a potential therapeutic target in preventing cardiac transplant rejection.


Assuntos
Transplante de Coração , Receptor 3 Toll-Like , Animais , Apoptose , Morte Celular , Transplante de Coração/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Doadores de Tecidos , Receptor 3 Toll-Like/metabolismo
4.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681708

RESUMO

Ischemia-reperfusion injury (IRI) is an inevitable consequence of organ transplant procedure and associated with acute and chronic organ rejection in transplantation. IRI leads to various forms of programmed cell death, which worsens tissue damage and accelerates transplant rejection. We recently demonstrated that necroptosis participates in murine cardiac microvascular endothelial cell (MVEC) death and murine cardiac transplant rejection. However, MVEC death under a more complex IRI model has not been studied. In this study, we found that simulating IRI conditions in vitro by hypoxia, reoxygenation and treatment with inflammatory cytokines induced necroptosis in MVECs. Interestingly, the apoptosis-inducing factor (AIF) translocated to the nucleus during MVEC necroptosis, which is regulated by the mitochondrial permeability molecule cyclophilin D (CypD). Furthermore, CypD deficiency in donor cardiac grafts inhibited AIF translocation and mitigated graft IRI and rejection (n = 7; p = 0.002). Our studies indicate that CypD and AIF play significant roles in MVEC necroptosis and cardiac transplant rejection following IRI. Targeting CypD and its downstream AIF may be a plausible approach to inhibit IRI-caused cardiac damage and improve transplant survival.


Assuntos
Fator de Indução de Apoptose/metabolismo , Necroptose , Peptidil-Prolil Isomerase F/metabolismo , Animais , Fator de Indução de Apoptose/antagonistas & inibidores , Fator de Indução de Apoptose/genética , Hipóxia Celular , Núcleo Celular/metabolismo , Peptidil-Prolil Isomerase F/deficiência , Peptidil-Prolil Isomerase F/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/citologia , Modelos Biológicos , Necroptose/efeitos dos fármacos , Oxigênio/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fator de Necrose Tumoral alfa/farmacologia
5.
Am J Transplant ; 19(3): 686-698, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30203531

RESUMO

Transplantation is invariably associated with programmed cell death including apoptosis and necrosis, resulting in delayed graft function and organ rejection. We have demonstrated the contribution of necroptosis to mouse microvascular endothelial cell (MVEC) death and transplant rejection. Organ injury results in the opening of mitochondrial permeability transition pores (mPTPs), which can trigger apoptotic molecules release that ultimately results in cell death. The effect of mPTPs in the necroptotic pathway remains controversial; importantly, their role in transplant rejection is not clear. In this study, tumor necrosis factor-α triggered MVECs to undergo receptor-interacting protein kinase family (RIPK1/3)-dependent necroptosis. Interestingly, inhibition of mPTP opening could also inhibit necroptotic cell death. Cyclophilin-D (Cyp-D) is a key regulator of the mPTPs. Both inhibition and deficiency of Cyp-D protected MVECs from necroptosis (n = 3, P < .00001). Additionally, inhibition of Cyp-D attenuated RIPK3-downstream mixed-lineage kinase domain-like protein phosphorylation. In vivo, Cyp-D-deficient cardiac grafts showed prolonged survival in allogeneic BALB/c mice posttransplant compared with wild-type grafts (n = 7, P < .0001). Our study results suggest that the mPTPs may be important mechanistic mediators of necroptosis in cardiac grafts. There is therapeutic potential in targeting cell death via inhibition of the mPTP-regulating molecule Cyp-D to prevent cardiac graft rejection.


Assuntos
Permeabilidade da Membrana Celular , Células Endoteliais/patologia , Rejeição de Enxerto/etiologia , Transplante de Coração/efeitos adversos , Mitocôndrias/patologia , Necroptose , Peptidil-Prolil Isomerase F/metabolismo , Aloenxertos , Animais , Peptidil-Prolil Isomerase F/genética , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Doadores de Tecidos , Fator de Necrose Tumoral alfa/farmacologia
6.
Nephrology (Carlton) ; 24(6): 661-669, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30175514

RESUMO

BACKGROUND: Ischaemia-reperfusion injury (IRI) is associated with programmed cell death that promotes inflammation and organ dysfunction. Necroptosis is mediated by members of receptor interacting protein kinases (RIPK1/3). Inhibition of RIPK1/3 provides a pro-survival benefit in kidney IRI. Caspase-8 initiates apoptosis and contributes to IRI. We studied whether inhibiting both RIPK3 and caspase-8 would provide an additional benefit in kidney IRI. METHODS: A clamp was applied to the left kidney pedicle for 45 min followed by right kidney nephrectomy. Kidney and serum from wild type, RIPK3-/- , and RIPK3-/- caspase-8-/- double knockout (DKO) mice were collected post-IRI for assessment of injury. Tubular epithelial cells (TEC) isolated from wild type, RIPK3-/- , and DKO mice were treated with interferons-γ and interleukin-1ß to induce apoptotic death. RESULTS: Kidney IRI of DKO mice did not show improvement over RIPK3-/- mice. We have found that DKO triggered 'intrinsic' apoptosis in TEC in response to interleukin-1ß and interferons-γ. Up-regulation of the B-cell lymphoma 2 (Bcl-2)-associated death promoter, the Bcl-2-homologous antagonist killer and Bcl-2-associated X protein and enhanced activation of caspase-3 and 9 were found in DKO TEC. TEC infected with Murine cytomegalovirus that encodes multiple cell death inhibitors resist to death. CONCLUSION: We show that the deletion of both RIPK3 and caspase-8 does not provide additive benefit in IRI or TEC death and may enhance injury by up-regulation of intrinsic apoptosis. This suggests blocking multiple death pathways may be required for the prevention of kidney IRI clinically.


Assuntos
Apoptose , Caspase 8/metabolismo , Células Epiteliais/enzimologia , Nefropatias/enzimologia , Túbulos Renais/enzimologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Traumatismo por Reperfusão/enzimologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
7.
Kidney Int ; 87(2): 396-408, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25207880

RESUMO

Cytokines and chemokines produced by tubular epithelial and infiltrating cells are critical to inflammation in renal ischemia-reperfusion injury. IL-37, a newly described IL-1 family member, inhibits IL-18-dependent pro-inflammatory cytokine production by its binding to IL-18 receptors and IL-18 binding protein. The potential role of IL-37 in renal ischemia-reperfusion injury is unknown. Here we found that exposure of tubular epithelial cells to exogenous IL-37 downregulated hypoxia and the IL-18-induced expression of TNFα, IL-6, and IL-1ß. Importantly, human PT-2 tubular epithelial cells have inducible expression of IL-37. Moreover, pro-inflammatory cytokine expression was augmented in IL-37 mRNA-silenced tubular epithelial cells and inhibited by transfection with pCMV6-XL5-IL-37. In a mouse ischemic injury model, transgenic expression of human IL-37 inhibited kidney expression of TNFα, IL-6, and IL-1ß and improved mononuclear cell infiltration, kidney injury, and function. Thus, human tubular epithelial cells express the IL-18 contra-regulatory protein IL-37 as an endogenous control mechanism to reduce inflammation. Augmenting kidney IL-37 may represent a novel strategy to suppress renal injury responses and promote kidney function after renal ischemic injury and transplantation.


Assuntos
Citocinas/genética , Interleucina-18/metabolismo , Interleucina-1/metabolismo , Rim/imunologia , Rim/lesões , Traumatismo por Reperfusão/imunologia , Animais , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1/antagonistas & inibidores , Interleucina-1/genética , Rim/irrigação sanguínea , Túbulos Renais/imunologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores de Interleucina-18/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
8.
J Transl Med ; 12: 142, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24886282

RESUMO

BACKGROUND: While substantial progress has been made in blocking acute transplant rejection with the advent of immune suppressive drugs, chronic rejection, mediated primarily by recipient antigen presentation, remains a formidable problem in clinical transplantation. We hypothesized that blocking co-stimulatory pathways in the recipient by induction of RNA interference using small interference RNA (siRNA) expression vectors can prolong allogeneic heart graft survival. METHOD: Vectors expressing siRNA specifically targeting CD40 and CD80 were prepared. Recipients (BALB/c mice) were treated with CD40 and/or CD80 siRNA expression vectors via hydrodynamic injection. Control groups were injected with a scrambled siRNA vector and sham treatment (PBS). After treatment, a fully MHC-mismatched (BALB/c to C57/BL6) heart transplantation was performed. RESULT: Allogeneic heart graft survival (>100 days) was approximately 70% in the mice treated simultaneously with CD40 and CD80 siRNA expression vectors with overall reduction in lymphocyte interstitium infiltration, vascular obstruction, and edema. Hearts transplanted into CD40 or CD80 siRNA vector-treated recipients had an increased graft survival time compared to negative control groups, but did not survive longer than 40 days. In contrast, allogenic hearts transplanted into recipients treated with scrambled siRNA vector and PBS stopped beating within 10-16 days. Real-time PCR (RT-PCR) and flow cytometric analysis showed an upregulation of FoxP3 expression in spleen lymphocytes and a concurrent downregulation of CD40 and CD80 expression in splenic dendritic cells of siRNA-treated mice. Functional suppressive activity of splenic dendritic cells (DCs) isolated from tolerant recipients was demonstrated in a mixed lymphocyte reaction (MLR). Furthermore, DCs isolated from CD40- and CD80-treated recipients promoted CD4+CD25+FoxP3+ regulatory T cell differentiation in vitro. CONCLUSION: This study demonstrates that the simultaneous silencing of CD40 and CD80 genes has synergistic effects in preventing allograft rejection, and may therefore have therapeutic potential in clinical transplantation.


Assuntos
Antígeno B7-1/genética , Antígenos CD40/genética , Inativação Gênica , Rejeição de Enxerto/prevenção & controle , Transplante de Coração , Animais , Sequência de Bases , Primers do DNA , Citometria de Fluxo , Rejeição de Enxerto/genética , Teste de Cultura Mista de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
Am J Nephrol ; 40(1): 84-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25059568

RESUMO

BACKGROUND: Renal ischemia reperfusion injury (IRI) leads to acute kidney injury (AKI) and the death of tubular epithelial cells (TEC). The release of high-mobility group box-1 (HMGB1) and other damage-associated molecular pattern moieties from dying cells may promote organ dysfunction and inflammation by effects on TEC. Glycyrrhizic acid (GZA) is a functional inhibitor of HMGB1, but its ability to attenuate the HMGB1-mediated injury of TEC has not been tested. METHODS/RESULTS: In vitro, hypoxia and cytokine treatment killed TEC and resulted in the progressive release of HMGB1 into the supernatant. GZA reduced the hypoxia-induced TEC death as measured by annexin-V and propidium iodide. Hypoxia increased the expression of MCP-1 and CXCL1 in TEC, which was reduced by GZA in a dose-dependent manner. Similarly, the HMGB1 activation of effector NK cells was inhibited by GZA. To test the effect of HMGB1 neutralization by GZA in vivo, mice were subjected to renal IRI. HMGB1 protein expression increased progressively in kidneys from 4 to 24 h after ischemia and was detected in tubular cells by 4 h using immunohistochemistry. GZA preserved renal function after IRI and reduced tubular necrosis and neutrophil infiltration by histological analyses and ethidium homodimer staining. CONCLUSIONS: Importantly, these data demonstrate for the first time that AKI following hypoxia and renal IRI may be promoted by HMGB1 release, which can reduce the survival of TEC and augment inflammation. Inhibition of the interaction of HMGB1 with TEC through GZA may represent a therapeutic strategy for the attenuation of renal injury following IRI and transplantation.


Assuntos
Injúria Renal Aguda/genética , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Proteína HMGB1/efeitos dos fármacos , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Injúria Renal Aguda/metabolismo , Animais , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Rim/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Regulação para Cima
10.
Eur J Immunol ; 42(5): 1216-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22539294

RESUMO

The establishment of immune tolerance and prevention of chronic rejection remain major goals in clinical transplantation. In bone marrow (BM) transplantation, T cells and NK cells play important roles for graft rejection. In addition, graft-versus-host-disease (GVHD) remains a major obstacle for BM transplantation. In this study, we aimed to establish mixed chimerism in an irradiation-free condition. Our data indicate that adoptive transfer of donor-derived T-cell receptor (TCR) αß(+) CD3(+) CD4(-) CD8(-) NK1.1(-) (double negative, DN) Treg cells prior to C57BL/6 to BALB/c BM transplantation, in combination with cyclophosphamide, induced a stable-mixed chimerism and acceptance of C57BL/6 skin allografts but rejection of third-party C3H (H-2k) skin grafts. Adoptive transfer of CD4(+) and CD8(+) T cells, but not DN Treg cells, induced GVHD in this regimen. The recipient T-cell alloreactive responsiveness was reduced in the DN Treg cell-treated group and clonal deletions of TCRVß2, 7, 8.1/2, and 8.3 were observed in both CD4(+) and CD8(+) T cells. Furthermore, DN Treg-cell treatment suppressed NK cell-mediated BM rejection in a perforin-dependent manner. Taken together, our results suggest that adoptive transfer of DN Treg cells can control both adoptive and innate immunities and promote stable-mixed chimerism and donor-specific tolerance in the irradiation-free regimen.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimerismo/efeitos dos fármacos , Deleção Clonal/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Transplante de Medula Óssea/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Deleção Clonal/efeitos dos fármacos , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/imunologia , Imunossupressores/uso terapêutico , Células Matadoras Naturais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Perforina/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transplante de Pele/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
11.
J Immunol ; 185(2): 967-73, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20548025

RESUMO

Renal ischemia reperfusion injury (IRI) occurs after reduced renal blood flow and is a major cause of acute injury in both native and transplanted kidneys. Studies have shown diverse cell types in both the innate and the adaptive immune systems participate in kidney IRI as dendritic cells, macrophages, neutrophils, B cells, CD4(+) NK(+) cells, and CD4(+) T cells all contribute to this form of injury. Recently, we have found that NK cells induce apoptosis in tubular epithelial cells (TECs) and also contribute to renal IRI. However, the mechanism of NK cell migration and activation during kidney IRI remains unknown. In this study, we have identified that kidney TECs express a high level of osteopontin (OPN) in vitro and in vivo. C57BL/6 OPN-deficient mice have reduced NK cell infiltration with less tissue damage compared with wild-type C57BL/6 mice after ischemia. OPN can directly activate NK cells to mediate TEC apoptotic death and can also regulate chemotaxis of NK cells to TECs. Taken together, our study's results indicate that OPN expression by TECs is an important factor in initial inflammatory responses that involves NK cells activity in kidney IRI. Inhibiting OPN expression at an early stage of IRI may be protective and preserve kidney function after transplantation.


Assuntos
Células Epiteliais/metabolismo , Rim/irrigação sanguínea , Células Matadoras Naturais/imunologia , Osteopontina/metabolismo , Traumatismo por Reperfusão/imunologia , Animais , Apoptose/imunologia , Movimento Celular/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Expressão Gênica , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Túbulos Renais/citologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Osteopontina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Blood ; 113(12): 2646-54, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19164600

RESUMO

Translation of small interfering RNA (siRNA)-based approaches into practical therapeutics is limited because of lack of an effective and cell-specific delivery system. Herein, we present a new method of selectively delivering siRNA to dendritic cells (DCs) in vivo using CD40 siRNA-containing immunoliposomes (siILs) that were decorated with DC-specific DEC-205 mAb. Administration of CD40 siILs resulted in DC-specific cell targeting in vitro and in vivo. On treatment with CD40 siILs, the expression of CD40 in DCs, as well allostimulatory activity was inhibited. In vivo administration resulted in selective siRNA uptake into immune organs and functional immune modulation as assessed using a model antigen. In conclusion, this is the first demonstration of DC-specific siRNA delivery and gene silencing in vivo, which highlights the potential of DC-mediated immune modulation and the feasibility of siRNA-based clinical therapy.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Antígenos CD40/antagonistas & inibidores , Células Dendríticas/efeitos dos fármacos , Terapia Genética/métodos , Terapia de Imunossupressão/métodos , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Células da Medula Óssea/citologia , Antígenos CD40/biossíntese , Antígenos CD40/genética , Antígenos CD40/imunologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/imunologia , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Imunoconjugados/administração & dosagem , Lectinas Tipo C/imunologia , Lipossomos , Ativação Linfocitária/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Receptores de Superfície Celular/imunologia , Linfócitos T/imunologia
13.
Nephrol Dial Transplant ; 26(7): 2144-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21127133

RESUMO

BACKGROUND: Transplant rejection is mediated by T-cell activation which is modulated by interleukin-2 (IL-2) binding to IL-2R (CD25). Monoclonal anti-IL-2 receptor antibody is used in renal transplantation to reduce rejection. Interestingly, proximal tubular epithelial cells (TEC) express CD25, similar to T cells. We have demonstrated that IL-2 induces murine TEC apoptosis through down-regulation of the caspase-8 inhibitor protein c-FLIP. Anti-CD25 antibody may be useful clinically to limit renal injury, but this has not been tested in human TEC. METHODS: Human PT-2 TEC were isolated and cloned from the urine of transplant patients. Apoptosis was determined by FACS with Annexin-V FITC. Protein expression was studied using western blot, and mRNA levels by quantitative real-time (PR-PCR). RESULTS: We demonstrated that the morphology of a human kidney cell line (PT-2) cloned from urine was consistent with proximal TEC and expresses alkaline phosphatase, cytokeratin, vimentin, CD13, CD26, and low levels of E-cadherin. Basal IL-2 receptor (CD25) was up-regulated by IL-2/IFN-γ stimulation, and cytokine exposure induced apoptosis in a dose-dependent manner. Apoptosis with IL-2/IFN-γ was associated with increased caspase-8 activity and decreased endogenous caspase-8 inhibitor c-FLIP mRNA and protein expression. IL-2/IFN-γ-induced apoptosis could be blocked by pre-treatment of PT-2 with anti IL-2R antibody (basiliximab) but not control IgG antibody. CONCLUSIONS: These data demonstrate for the first time in human TEC that IL-2 and IFN-γ can induce TEC apoptosis which can be blocked by CD25 blockade antibody. These data suggest that anti-CD25 mAb might similarly attenuate inflammation-induced TEC injury in vivo. Kidney-expressed CD25 may represent a clinically important new target for attenuating early inflammatory injury in donor kidneys and preserving renal function during anti-rejection therapy.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Apoptose/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Interferon gama/farmacologia , Interleucina-2/farmacologia , Túbulos Renais/patologia , Receptores de Interleucina-2/imunologia , Apoptose/imunologia , Western Blotting , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Células Cultivadas , Células Epiteliais/patologia , Citometria de Fluxo , Rejeição de Enxerto/imunologia , Humanos , Terapia de Imunossupressão , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
14.
J Allergy Clin Immunol ; 125(3): 737-43, 743.e1-743.e6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20226305

RESUMO

BACKGROUND: Induction of RNA interference with small interfering RNA (siRNA) has demonstrated therapeutic potential through the knockdown of target genes. We have previously reported that systemic administration of CD40 siRNA is capable of attenuating allergic symptoms but in an allergen-nonspecific fashion. However, siRNA-based allergen-specific therapy for allergy has not been developed. OBJECTIVE: We attempted to develop a new allergen-specific therapy for allergy using CD40-silenced and allergen-pulsed dendritic cells (DCs). METHODS: Bone marrow-derived DCs were silenced with CD40 siRNA and pulsed with ovalbumin (OVA). Mice had allergy after intraperitoneal sensitization with OVA and keyhole limpet hemocyanin, followed by intranasal challenge with the same allergens. The mice were treated with CD40-silenced and OVA-pulsed DCs (CD40-silenced OVA DCs) either before allergic sensitization or after establishing allergic rhinitis. RESULTS: Mice receiving CD40-silenced OVA DCs either before or after the establishment of allergic rhinitis showed remarkable reductions in allergic symptoms caused by OVA challenge, as well as anti-OVA IgE levels in sera. Additionally, CD40-silenced OVA DCs suppressed eosinophil infiltration at the nasal septum, OVA-specific T-cell responses, T-cell production of IL-4 and IL-5 after stimulation with OVA, and CD4(+)CD25(-) effector T-cell responses. Furthermore, CD40-silenced OVA DCs facilitated the generation of CD4(+)CD25(+) forkhead box protein 3-positive OVA-specific regulatory T cells, which inhibit allergic responses in vivo. However, CD40-silenced OVA DCs suppressed only OVA-specific allergy but did not inhibit keyhole limpet hemocyanin-induced allergy, suggesting that CD40-silenced OVA DCs induce allergen-specific tolerance. CONCLUSIONS: This study is the first to demonstrate a novel allergen-specific therapy for allergy through DC-mediated immune modulation after gene silencing of CD40.


Assuntos
Antígenos CD40/antagonistas & inibidores , Células Dendríticas/imunologia , Hipersensibilidade/terapia , Imunoterapia/métodos , Interferência de RNA/imunologia , Animais , Antígenos CD40/genética , Separação Celular , Citometria de Fluxo , Camundongos , Ovalbumina/imunologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia
15.
J Immunol ; 181(11): 7489-98, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017938

RESUMO

Renal ischemia-reperfusion injury (IRI) can result in acute renal failure with mortality rates of 50% in severe cases. NK cells are important participants in early-stage innate immune responses. However, their role in renal tubular epithelial cell (TEC) injury in IRI is currently unknown. Our data indicate that NK cells can kill syngeneic TEC in vitro. Apoptotic death of TEC in vitro is associated with TEC expression of the NK cell ligand Rae-1, as well as NKG2D on NK cells. In vivo following IRI, there was increased expression of Rae-1 on TEC. FACS analyses of kidney cell preparations indicated a quantitative increase in NKG2D-bearing NK cells within the kidney following IRI. NK cell depletion in wild-type C57BL/6 mice was protective, while adoptive transfer of NK cells worsened injury in NK, T, and B cell-null Rag2(-/-)gamma(c)(-/-) mice with IRI. NK cell-mediated kidney injury was perforin (PFN)-dependent as PFN(-/-) NK cells had minimal capacity to kill TEC in vitro compared with NK cells from wild-type, FasL-deficient (gld), or IFN-gamma(-/-) mice. Taken together, these results demonstrate for the first time that NK cells can directly kill TEC and that NK cells contribute substantially to kidney IRI. NK cell killing may represent an important underrecognized mechanism of kidney injury in diverse forms of inflammation, including transplantation.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Nefropatias/imunologia , Túbulos Renais/imunologia , Células Matadoras Naturais/imunologia , Traumatismo por Reperfusão/imunologia , Transferência Adotiva/métodos , Animais , Apoptose/genética , Linhagem Celular , Células Epiteliais/patologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Nefropatias/genética , Nefropatias/patologia , Transplante de Rim/imunologia , Túbulos Renais/patologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/transplante , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/imunologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
16.
Int Immunol ; 20(2): 285-93, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18182381

RESUMO

Dendritic cells are among the most potent antigen-presenting cells and are important in the development of both immunity and tolerance. Tolerogenic dendritic cell (Tol-DC) is a key factor in the induction and maintenance of tolerance during transplantation. However, the precise mechanism and direct evidence of in vivo immune modulation remain unclear. In the present study, we identified critical roles of immune modulation on transplant tolerance through interactions between Tol-DCs and regulatory T (Treg) cells. Tol-DCs remained in an immature state and were insensitive to maturation stimuli. Tol-DCs in tolerant recipients heightened the expression of indoleamine 2,3-dioxygenase (IDO) that induced allogeneic T-cell apoptosis. Adoptive transfer of Tol-DCs isolated from primary tolerant recipients resulted in augmentation of CD4(+)CD25(+)CTLA4(+) Treg cells and prolonged graft survival in secondary allogeneic heart transplantation and synergized with Treg cells to induce tolerance in secondary recipients. This study indicates that Tol-DC offers two functions during the process of tolerogenesis: suppression of anti-donor T-cell responses through production of IDO and interaction with Treg cells, which provides a framework for future research into tolerance induction.


Assuntos
Transferência Adotiva , Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/imunologia , Animais , Células Dendríticas/citologia , Células Dendríticas/enzimologia , Sinergismo Farmacológico , Transplante de Coração , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/citologia , Transplante Heterotópico , Transplante Homólogo , Regulação para Cima
17.
Open Biol ; 9(10): 190061, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31594465

RESUMO

Blockade of inhibitory receptors (IRs) is one of the most effective immunotherapeutic approaches to treat cancer. Dysfunction of miRNAs is a major cause of aberrant expression of IRs and contributes to the immune escape of cancer cells. How miRNAs regulate immune checkpoint proteins in breast cancer remains largely unknown. In this study, downregulation of miRNAs was observed in PD-1-overexpressing CD8+ T cells using miRNA array analysis of mouse breast cancer homografts. The data reveal that miR-149-3p was predicted to bind the 3'UTRs of mRNAs encoding T-cell inhibitor receptors PD-1, TIM-3, BTLA and Foxp1. Treatment of CD8+ T cells with an miR-149-3p mimic reduced apoptosis, attenuated changes in mRNA markers of T-cell exhaustion and downregulated mRNAs encoding PD-1, TIM-3, BTLA and Foxp1. On the other hand, T-cell proliferation and secretion of effector cytokines indicative of increased T-cell activation (IL-2, TNF-α, IFN-γ) were upregulated after miR-149-3p mimic treatment. Moreover, the treatment with a miR-149-3p mimic promoted the capacity of CD8+ T cells to kill targeted 4T1 mouse breast tumour cells. Collectively, these data show that miR-149-3p can reverse CD8+ T-cell exhaustion and reveal it to be a potential antitumour immunotherapeutic agent in breast cancer.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Neoplasias Mamárias Experimentais/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
18.
Clin Immunol ; 127(3): 313-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18358783

RESUMO

Tolerogenic dendritic cells (Tol-DCs) and regulatory T cells (Treg) are key factors in the induction and maintenance of transplantation tolerance. We previously demonstrated that ex vivo-isolated Tol-DCs promote Treg generation, and vice versa, in an in vitro co-culture system. Here we demonstrate the occurrence of such an immune regulatory feedback loop in vivo. Tol-DC generated in vitro by treatment with LF 15-0195 exhibited features of immature DC and express low levels of MHC class II, CD86 and CD40. These Tol-DCs were capable of augmenting CD4(+)CD25(+)CTLA4(+) and FoxP3(+) Treg cell numbers and activity in cardiac allograft recipients. On the other hand, Tol-DCs possessed an ability to generate Treg cells in vitro. The adoptive transfer of these in vitro-generated Treg cells resulted in an increase of Tol-DC in vivo, suggesting that an immune regulatory feedback loop, between Tol-DC and Treg, exists in vivo. Furthermore, the administration of in vitro-generated Tol-DCs or Treg cells prevented rejection of allografts. Co-administration of Tol-DC and Treg synergized efficacy of promoting allograft survival heart transplantation. The present study highlights the therapeutic potential of preventing allograft rejection using in vitro-generated Tol-DCs and Treg.


Assuntos
Células Dendríticas/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/imunologia , Transferência Adotiva , Animais , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Células Dendríticas/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Sobrevivência de Enxerto , Guanidinas/farmacologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo
19.
Xenotransplantation ; 15(1): 56-63, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18333914

RESUMO

BACKGROUND: Antibody-mediated hyperacute and acute graft rejection are major obstacles in achieving long-term graft survival in xenotransplantation. It is well documented that regulatory T (Treg) cells play a very important role in regulating immune responses to self and non-self antigens. Our previous studies have shown that TCRalphabeta+CD3+CD4-CD8- (double negative, DN)-Treg cells can suppress anti-donor T-cell responses and prolong graft survival in allo- and xenotransplantation models. We have demonstrated that DN-Treg cells can induce B-cell apoptosis in vitro through a perforin-dependent pathway. METHODS: B6 mice received rat heart grafts, followed by 14 days of LF15-0195 treatment. Some mice received Lewis rat cell activated DN-Treg cells after LF treatment. DN-Treg cells, purified from perforin-/- mice and from B6 mice pre-immunized with third party rat cells, were used as controls. RESULTS: In this study, we investigated the possibility that adoptive transfer of xenoreactive DN-Treg cells could suppress B cells in vivo, thus prolonging xenograft survival. We found that apoptotic death of B cells significantly increased after adoptive transfer of DN-Treg cells. In addition, anti-donor IgG subtypes were significantly inhibited in the DN-Treg cell-treated group, in which the rejection pattern was altered towards cellular-mediated rejection rather than antibody-mediated acute vascular rejection. However, perforin-deficient DN-Treg cells failed to induce B-cell death and to prolong heart graft survival, indicating a perforin-dependent mechanism contributes to B-cell death in vivo. CONCLUSIONS: This study suggests that adoptive transfer of xenoreactive DN-Treg cells can inhibit B-cell responses in vivo. DN-Treg cells may be valuable in controlling B-cell responses in xenotransplantation.


Assuntos
Transferência Adotiva , Linfócitos B/imunologia , Morte Celular/fisiologia , Rejeição de Enxerto , Transplante de Coração , Linfócitos T Reguladores/imunologia , Animais , Sobrevivência de Enxerto , Transplante de Coração/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Perforina/genética , Perforina/metabolismo , Ratos , Ratos Endogâmicos Lew , Transplante Heterólogo
20.
J Immunol Res ; 2017: 1503960, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28884134

RESUMO

During ischemia or inflammation of organs, intracellular pH can decrease if acid production exceeds buffering capacity. Thus, the microenvironment can expose parenchymal cells to a reduced extracellular pH which can alter pH-dependent intracellular functions. We have previously shown that while silencing caspase-8 in an in vivo ischemia reperfusion injury (IRI) model results in improved organ function and survival, removal of caspase-8 function in a donor organ can paradoxically result in enhanced receptor-interacting protein kinase 1/3- (RIPK1/3-) regulated necroptosis and accelerated graft loss following transplantation. In our current study, TRAIL- (TNF-related apoptosis-inducing ligand-) induced cell death in vitro at neutral pH and caspase-8 inhibition-enhanced RIPK1-dependent necroptotic death were confirmed. In contrast, both caspase-8 inhibition and RIPK1 inhibition attenuated cell death at a cell pH of 6.7. Cell death was attenuated with mixed lineage kinase domain-like (MLKL) silencing, indicating that MLKL membrane rupture, a distinctive feature of necroptosis, occurs regardless of pH. In summary, there is a distinct regulatory control of apoptosis and necroptosis in endothelial cells at different intracellular pH. These results highlight the complexity of modulating cell death and therapeutic strategies that may need to consider different consequences on cell death dependent on the model.


Assuntos
Apoptose , Citoplasma/metabolismo , Células Endoteliais/citologia , Necrose , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Concentração de Íons de Hidrogênio , Inflamação , Camundongos , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA