Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(16): 26418-26434, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710504

RESUMO

In this work, we propose to use various artificial neural network (ANN) structures for modeling and compensation of intra- and inter-subcarrier fiber nonlinear interference in digital subcarrier multiplexing (DSCM) optical transmission systems. We perform nonlinear channel equalization by employing different ANN cores including convolutional neural networks (CNN) and long short-term memory (LSTM) layers. First, we develop a fiber nonlinearity compensation for DSCM systems based on a fully-connected network across all subcarriers. In subsequent steps, and borrowing from the perturbation analysis of fiber nonlinearity, we gradually upgrade proposed designs towards modular structures with better performance-complexity advantages. Our study shows that putting proper macro structures in design of ANN nonlinear equalizers in DSCM systems can be crucial in development of practical solutions for future generations of coherent optical transceivers.

2.
Part Fibre Toxicol ; 20(1): 8, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899356

RESUMO

BACKGROUND: Montmorillonite (Mt) and its derivatives are now widely used in industrial and biomedical fields. Therefore, safety assessments of these materials are critical to protect human health after exposure; however, studies on the ocular toxicity of Mt are lacking. In particular, varying physicochemical characteristics of Mt may greatly alter their toxicological potential. To explore the effects of such characteristics on the eyes, five types of Mt were investigated in vitro and in vivo for the first time, and their underlying mechanisms studied. RESULTS: The different types of Mt caused cytotoxicity in human HCEC-B4G12 corneal cells based on analyses of ATP content, lactate dehydrogenase (LDH) leakage, cell morphology, and the distribution of Mt in cells. Among the five Mt types, Na-Mt exhibited the highest cytotoxicity. Notably, Na-Mt and chitosan-modified acidic Na-Mt (C-H-Na-Mt) induced ocular toxicity in vivo, as demonstrated by increases corneal injury area and the number of apoptotic cells. Na-Mt and C-H-Na-Mt also induced reactive oxygen species (ROS) generation in vitro and in vivo, as indicated by 2',7'-dichlorofluorescin diacetate and dihydroethidium staining. In addition, Na-Mt activated the mitogen-activated protein kinase signaling pathway. The pretreatment of HCEC-B4G12 cells with N-acetylcysteine, an ROS scavenger, attenuated the Na-Mt-induced cytotoxicity and suppressed p38 activation, while inhibiting p38 activation with a p38-specific inhibitor decreased Na-Mt-induced cytotoxicity. CONCLUSIONS: The results indicate that Mt induces corneal toxicity in vitro and in vivo. The physicochemical properties of Mt greatly affect its toxicological potential. Furthermore, ROS generation and p38 activation contribute at least in part to Na-Mt-induced toxicity.


Assuntos
Bentonita , Neuropatia Óptica Tóxica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Bentonita/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Apoptose
3.
J Nanobiotechnology ; 20(1): 146, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305659

RESUMO

BACKGROUND: Silica nanoparticles (SiO2 NPs) are extensively applied in the biomedical field. The increasing medical application of SiO2 NPs has raised concerns about their safety. However, studies on SiO2 NP-induced retinal toxicity are lacking. METHODS: We investigated the retinal toxicity of SiO2 NPs with different sizes (15 and 50 nm) in vitro and in vivo along with the underlying mechanisms. The cytotoxicity of SiO2 NPs with different sizes was assessed in R28 human retinal precursor cells by determining the ATP content and LDH release. The cell morphologies and nanoparticle distributions in the cells were analyzed by phase-contrast microscopy and transmission electron microscopy, respectively. The mitochondrial membrane potential was examined by confocal laser scanning microscopy. The retinal toxicity induced by SiO2 NPs in vivo was examined by immunohistochemical analysis. To further investigate the mechanism of retinal toxicity induced by SiO2 NPs, reactive oxygen species (ROS) generation, glial cell activation and inflammation were monitored. RESULTS: The 15-nm SiO2 NPs were found to have higher cytotoxicity than the larger NPs. Notably, the 15-nm SiO2 NPs induced retinal toxicity in vivo, as demonstrated by increased cell death in the retina, TUNEL-stained retinal cells, retinal ganglion cell degeneration, glial cell activation, and inflammation. In addition, The SiO2 NPs caused oxidative stress, as demonstrated by the increase in the ROS indicator H2DCF-DA. Furthermore, the pretreatment of R28 cells with N-acetylcysteine, an ROS scavenger, attenuated the ROS production and cytotoxicity induced by SiO2 NPs. CONCLUSIONS: These results provide evidence that SiO2 NPs induce size-dependent retinal toxicity and suggest that glial cell activation and ROS generation contribute to this toxicity.


Assuntos
Nanopartículas , Dióxido de Silício , Sobrevivência Celular , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química
4.
Opt Express ; 27(13): 18787-18793, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252815

RESUMO

Continuous real-time measurements are demonstrated from a 200Gb/s format configurable CFP transceiver that uses dual-polarization probabilistic-shaped 16QAM (DP-PS16QAM) modulation. Placed in a 50GHz coherent DWDM transmission system, DP-PS16QAM achieves a back-to-back 1.8dB OSNR gain over uniform DP-16QAM. It also transports over 1940km with EDFA-only amplification, thus doubling propagation distance of uniform DP-16QAM. Furthermore, a 1Tb/s super-channel consisting of five 200Gb/s DP-PS16QAM sub-carriers is placed in a 200GHz grid, and it achieves over 1600km transmission and 5b/s/Hz SE with a raw SE at 6.86b/s/Hz.

5.
Arch Toxicol ; 92(2): 717-728, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28993908

RESUMO

4-Methoxy-TEMPO, a derivative of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), is a stable nitroxide radical and is generally used in organic and pharmaceutical syntheses for the oxidation of alcohols. Previously, we reported the involvement of reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) in TEMPO-induced apoptosis in mouse L5178Y cells. In this study, we investigated 4-methoxy-TEMPO induced toxicity in human HepG2 hepatoma cells and its underlying mechanisms. Treatments with 4-methoxy-TEMPO (0.5-5 mM for 2-6 h) caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, decreased levels of glutathione. 4-Methoxy-TEMPO treatment also induced DNA damage as characterized by increased levels of DNA tail intensity in the Comet assay, increased phosphorylation of related proteins including γ-H2A.X, p-Chk1, and p-Chk2, and activation of MAPK signaling pathways. In addition, 4-methoxy-TEMPO also induced autophagy as demonstrated by the conversion of LC3B-I to II, decreased level of p62, and the appearance of GFP-LC3B punctae. To investigate the crosstalk between different signaling pathways, pretreatment of HepG2 with N-acetylcysteine, an ROS scavenger, attenuated 4-methoxy-TEMPO-induced DNA damage, suppressed JNK activation, and diminished autophagy induction. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased DNA damage levels induced by 4-methoxy-TEMPO. These results suggest that multiple mechanisms including ROS generation, DNA damage, and MAPK activation contribute to 4-methoxy-TEMPO-induced toxicity.


Assuntos
Autofagia/efeitos dos fármacos , Óxidos N-Cíclicos/toxicidade , Dano ao DNA , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Antracenos/farmacologia , Ensaio Cometa , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo/efeitos dos fármacos
6.
Arch Toxicol ; 91(3): 1293-1307, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27369375

RESUMO

Many usnic acid-containing dietary supplements have been marketed as weight loss agents, although severe hepatotoxicity and acute liver failure have been associated with their overuse. Our previous mechanistic studies revealed that autophagy, disturbance of calcium homeostasis, and ER stress are involved in usnic acid-induced toxicity. In this study, we investigated the role of oxidative stress and the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. We found that a 24-h treatment with usnic acid caused DNA damage and S-phase cell cycle arrest in a concentration-dependent manner. Usnic acid also triggered oxidative stress as demonstrated by increased reactive oxygen species generation and glutathione depletion. Short-term treatment (6 h) with usnic acid significantly increased the protein level for Nrf2 (nuclear factor erythroid 2-related factor 2), promoted Nrf2 translocation to the nucleus, up-regulated antioxidant response element (ARE)-luciferase reporter activity, and induced the expression of Nrf2-regulated targets, including glutathione reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 (NQO1). Furthermore, knockdown of Nrf2 with shRNA potentiated usnic acid-induced DNA damage and cytotoxicity. Taken together, our results show that usnic acid causes cell cycle dysregulation, DNA damage, and oxidative stress and that the Nrf2 signaling pathway is activated in usnic acid-induced cytotoxicity.


Assuntos
Benzofuranos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Benzofuranos/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 111(48): 17266-71, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411317

RESUMO

Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1(+)) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1(Neg)) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1(+) cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.


Assuntos
Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Microscopia Confocal , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/prevenção & controle , Prognóstico , Interferência de RNA , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Transplante Heterólogo
8.
Opt Express ; 24(20): 23531-23542, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828415

RESUMO

An efficient trellis-based phase noise mitigation algorithm is proposed to highly improve the performance of coherent transmission systems, especially in high order modulation formats. The proposed method targets the coherent optical systems where the performance is limited by various sources of phase noise including laser line-width, fiber non-linearity, and phase noise induced by phase-locked loop. Considering hardware limitations of ultra-high data rate processing in optical systems, a hardware-efficient parallelized and pipelined architecture is utilized. Experimental results in 200 Gb/s DP-16QAM co-propagated with 10-G channels demonstrate significant performance improvement over other existing methods.

9.
Graefes Arch Clin Exp Ophthalmol ; 254(10): 1957-1965, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27405975

RESUMO

PURPOSE: We aimed to evaluate the effect of IL-10 gene transfection on endothelial progenitor cells (EPCs) under inflammatory conditions, and explore the therapeutic potential of IL-10-transfected EPC transplantation on nonproliferative diabetic retinopathy (NPDR). METHODS: Lentivirus vectors encoding IL-10 were constructed and introduced into EPCs isolated from rat bone marrow. After exposure to recombinant rat TNF-α, abilities of nontransfected EPCs (non-EPCs) and EPCs transfected with normal control lentivirus (EPCs-GFP) or IL-10 expressing lentivirus (EPCs-IL-10-GFP) were assessed, including migration, adhesion, and tube formation. IL-10 production by EPCs-IL-10-GFP was determined by ELISA. Following 12 weeks after establishment of diabetes, diabetic rats were randomly injected with non-EPCs, EPCs-GFP, or EPCs-IL-10-GFP via tail vein. Expression of inflammatory factors and factors associated with nuclear factor-kappa B (NF-kB) signal pathway, retinal histological analysis, and retinal vascular permeability were assessed 2 weeks after transplantation. RESULTS: The detrimental effects of TNF-ɑ on the abilities of EPCs were significantly attenuated in EPCs-IL-10-GFP compared with non-EPCs and EPCs-GFP. The concentration of IL-10 in the EPCs-IL-10-GFP group was significantly higher than the non-EPCs and EPCs-GFP groups. Additionally, transplantation of EPCs-IL-10-GFP significantly inhibited inflammatory factors expression and activation of NF-kB signal pathway, improved retinal histological changes, and attenuated retinal vascular permeability. CONCLUSION: In conclusion, transplantation of IL-10-transfected EPCs significantly improved EPCs-mediated retinal vascular repair and subsequently suppressed NPDR progression. This was associated with inflammation suppression, at least partly via inhibiting the NF-kB signal pathway. Transplantation of IL-10-transfected EPCs may be a new strategy for treatment of NPDR.


Assuntos
Retinopatia Diabética/terapia , Células Progenitoras Endoteliais/transplante , Interleucina-10/genética , Vasculite Retiniana/terapia , Vasos Retinianos/fisiologia , Transfecção , Animais , Barreira Hematorretiniana/fisiologia , Western Blotting , Permeabilidade Capilar/fisiologia , Transplante de Células , Retinopatia Diabética/metabolismo , Retinopatia Diabética/fisiopatologia , Células Progenitoras Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/fisiologia , Lentivirus/genética , Masculino , Microscopia Eletrônica de Transmissão , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Vasculite Retiniana/metabolismo , Vasculite Retiniana/fisiopatologia , Fator de Necrose Tumoral alfa/farmacologia
10.
Int J Mol Sci ; 17(5)2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27120595

RESUMO

Tumor necrosis factor superfamily 15 (TNFSF15) is an endogenous neovascularization inhibitor and an important negative regulator of vascular homeostasis. This study aimed to explore the potential role of TNFSF15 in diabetic retinopathy. Vitreous TNFSF15 and VEGF levels in proliferative diabetic retinopathy (PDR) patients were detected by ELISA. Retinal expression of TNFSF15 and the content of tight junction proteins (TJPs) in rats were detected by immunohistochemistry and Western blot, respectively. The blood retinal barrier (BRB) permeability was evaluated using Evans Blue (EB) dye. The TNFSF15/VEGF ratio was decreased in the vitreous fluid of patients with PDR relative to the controls, even though the expression levels of TNFSF15 were higher. TNFSF15 was dramatically decreased one month later after diabetes induction (p < 0.001), and then increased three months later and thereafter. TNFSF15 treatment significantly protected the BRB in the diabetic animals. Diabetes decreased TJPs levels in the retina, and these changes were inhibited by TNFSF15 treatment. Moreover, TNFSF15 decreased activation of VEGF both in mRNA and protein levels caused by diabetes. These results indicate that TNFSF15 is an important inhibitor in the progression of DR and suggest that the regulation of TNFSF15 shows promise for the development of diabetic retinopathy treatment strategies.


Assuntos
Barreira Hematorretiniana/metabolismo , Retinopatia Diabética/fisiopatologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Idoso , Animais , Claudina-5/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/metabolismo , Feminino , Genes Reporter , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Ocludina/metabolismo , Ratos , Ratos Wistar , Retina/metabolismo , Retina/patologia , Vasos Retinianos/metabolismo , Proteínas de Junções Íntimas/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/análise , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/análise
11.
Opt Express ; 23(15): 18988-95, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367561

RESUMO

We use 85-Gs/s digital-to-analog convertor (DAC), 85Gs/s analog-to-digital convertor (ADC), commercial optoelectronic (OE) components with an overall electronic 3dB-bandwidth of less than 15GHz, and novel digital signal processing (DSP) algorithms implemented in CMOS to realize real time coherent transceiver operation at a record baud rate of 61-Gbaud/s. Novel DSP approaches for mitigating narrow filtering effect is critical to acquire data clock, and to improve modem performance. With transmitter pre-emphasis, novel timing recovery, and soft output maximum likelihood sequence estimation (MLSE), we are able to achieve error free operation of single carrier 200-Gbit/s polarization division multiplexed quadrature phase shift keying (PDM-QPSK) after forward error correction (FEC) at 15.2dB OSNR with pre-FEC error rate of 1.4E-2, and single carrier 400-Gbit/s PDM 16-ary quadrature amplitude modulation (16QAM) after FEC at 30.2dB OSNR with pre-FEC error rate of 9.5E-3. Error free transmission for 200-Gbit/s PDM-QPSK and 400-Gbit/s PDM-16QAM was achieved after 1200km propagation with 6dB link margin and 80km propagation respectively.

12.
BMC Ophthalmol ; 14: 144, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25421815

RESUMO

BACKGROUND: P21 is one kind of cyclin-dependent kinase inhibitor that can prevent cells from going through the G1/S phase checkpoint and inhibit cell proliferation. Proliferative vitreoretinopathy (PVR) is a proliferative response in the eye. The aim of this study was to determine whether p21Waf1/Cip1 (p21) suppresses the proliferation and migration of retinal pigment epithelial (RPE) cells in vitro and controls PVR development in vivo. METHODS: Cell cycle analyses and transwell assays were conducted to assess cell proliferation characteristics and the migration ability of RPE cells after transfection with p21. Western blot and reverse-transcription polymerase chain reaction technologies were used to detect the expression of p21, CDK2 and cyclinE in RPE cells and rabbit retinal tissues. The impact of increasing p21 expression on PVR development was conducted by implantation of an adenovirus vector containing rabbit p21 (rAd-p21) in a PVR rabbit model. The prevalence of PVR and retinal detachment was determined by indirect ophthalmoscopy on days 3, 7, 14, and 21 after the injection of rAd-p21 into the vitreous. B scans and hematoxylin-eosin staining were employed to check rabbit retinas on day 21. RESULTS: Cell cycle analyses and transwell assays showed that p21 inhibited the proliferation and migration of RPE cells. Increased expression of p21 was detected in cultured RPE cells and rabbit retinas after transfection with the p21 gene, whereas levels of CDK2 and cyclinE were decreased. The increase in p21 expression effectively suppressed the development of PVR in a rabbit model. CONCLUSIONS: The increase in p21 expression in RPE cells not only inhibits the proliferation and migration of RPE cells in vitro, but also suppresses the development of PVR in vivo, which indicates its therapeutic potential in treating PVR.


Assuntos
Ciclina E/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Modelos Animais de Doenças , Epitélio Pigmentado da Retina/patologia , Vitreorretinopatia Proliferativa/prevenção & controle , Adenoviridae/genética , Animais , Western Blotting , Ciclo Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Progressão da Doença , Citometria de Fluxo , Vetores Genéticos , Humanos , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia
13.
iScience ; 27(3): 109040, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375232

RESUMO

Biological visual systems intrinsically include multiple kinds of motion-sensitive neurons. Some of them have been successfully used to construct neural computational models for problem-specific engineering applications such as motion detection, object tracking, etc. Nevertheless, it remains unclear how these neurons' response mechanisms can be contributed to the topic of optimization. Hereby, the dragonfly's visual response mechanism is integrated with the inspiration of swarm evolution to develop a dragonfly visual evolutionary neural network for large-scale global optimization (LSGO) problems. Therein, a grayscale image input-based dragonfly visual neural network online outputs multiple global learning rates, and later, such learning rates guide a population evolution-like state update strategy to seek the global optimum. The comparative experiments show that the neural network is a competitive optimizer capable of effectively solving LSGO benchmark suites with 2000 dimensions per example and the design of an operational amplifier.

14.
J Med Chem ; 67(17): 15268-15290, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39145589

RESUMO

Retinal ischemia-reperfusion (RIR) injury can lead to various retinal diseases. Oxidative stress is considered an important pathological event in RIR injury. Here, we designed and synthesized 34 ocotillol derivatives, then examined their antioxidant and anti-inflammatory capacities; we found that compounds 7 (C24-R) and 8 (C24-S) were most active. To enhance their water solubility, sustained release, and biocompatibility, compounds 7 and 8 were encapsulated into liposomes for in vivo activity and mechanistic studies. In vivo studies indicated that compounds 7 and 8 protected normal retinal structure and physiological function after RIR injury, reversed damage to retinal ganglion cells, and the S-configuration exhibited significantly stronger activity compared with the R-configuration. Mechanistic studies showed that compound 8 exerted a therapeutic effect on RIR injury by activating the Keap1/Nrf2/ARE signaling pathway; compound 7 did not influence this pathway. We also demonstrated that differential isomerization at the C-24 position influenced protection against RIR injury.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Masculino , Camundongos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Camundongos Endogâmicos C57BL , Humanos
15.
J Zhejiang Univ Sci B ; 25(5): 361-388, 2024 May 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38725338

RESUMO

Ceria nanoparticles (CeO2 NPs) have become popular materials in biomedical and industrial fields due to their potential applications in anti-oxidation, cancer therapy, photocatalytic degradation of pollutants, sensors, etc. Many methods, including gas phase, solid phase, liquid phase, and the newly proposed green synthesis method, have been reported for the synthesis of CeO2 NPs. Due to the wide application of CeO2 NPs, concerns about their adverse impacts on human health have been raised. This review covers recent studies on the biomedical applications of CeO2 NPs, including their use in the treatment of various diseases (e.|g., Alzheimer's disease, ischemic stroke, retinal damage, chronic inflammation, and cancer). CeO2 NP toxicity is discussed in terms of the different systems of the human body (e.|g., cytotoxicity, genotoxicity, respiratory toxicity, neurotoxicity, and hepatotoxicity). This comprehensive review covers both fundamental discoveries and exploratory progress in CeO2 NP research that may lead to practical developments in the future.


Assuntos
Cério , Cério/química , Cério/toxicidade , Humanos , Animais , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Doença de Alzheimer , Nanopartículas/toxicidade
16.
Adv Sci (Weinh) ; 10(30): e2302909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653617

RESUMO

Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.


Assuntos
Produtos Biológicos , Oftalmopatias , Nanofibras , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Nanofibras/uso terapêutico , Fosfatidilinositol 3-Quinases , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Oftalmopatias/metabolismo , Produtos Biológicos/metabolismo , Peptídeos/metabolismo , Isquemia
17.
Biomater Sci ; 11(14): 4822-4826, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365951

RESUMO

Low drug loading and instability of liposomes are two main challenges in the clinic. Herein, a liposomal platform from alternative pyridine-appended disulfidephospholipid (Pyr-SS-PC) was developed for delivering camptothecin (CPT) with high loading and stability. These Pyr-SS-PC lipids with π-π stacking open a general gate in the delivery of aromatic ring-containing drugs.


Assuntos
Camptotecina , Lipossomos , Piridinas , Estabilidade de Medicamentos
18.
Free Radic Biol Med ; 206: 162-179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380044

RESUMO

Retinal ischemia-reperfusion (RIR) injury remains a major challenge that is detrimental to retinal cell survival in a variety of ocular diseases. However, current clinical treatments focus on a single pathological mechanism, making them unable to provide comprehensive retinal protection. A variety of natural products including ginsenoside Rg3 (Rg3) exhibit potent antioxidant and anti-inflammatory activities. Unfortunately, the hydrophobicity of Rg3 and the presence of various intraocular barriers limit its effective application in clinical settings. Hyaluronic acid (HA)- specifically binds to cell surface receptors, CD44, which is widely expressed in retinal pigment epithelial cells and M1-type macrophage. Here, we developed HA-decorated liposomes loaded with Rg3, termed Rg3@HA-Lips, to protect against retinal damage caused by RIR injury. Treatment with Rg3@HA-Lips significantly inhibited the oxidative stress induced by RIR injury. In addition, Rg3@HA-Lips promoted the transition of M1-type macrophage to the M2 type, ultimately reversing the pro-inflammatory microenvironment. The mechanism of Rg3@HA-Lips was further investigated and found that they can regulateSIRT/FOXO3a, NF-κB and STAT3 signaling pathways. Together with as well demonstrated good safety profiles, this CD44-targeted platform loaded with a natural product alleviates RIR injury by modulating the retinal microenvironment and present a potential clinical treatment strategy.


Assuntos
Microglia , Traumatismo por Reperfusão , Humanos , Lipossomos/farmacologia , Estresse Oxidativo , Macrófagos , Traumatismo por Reperfusão/tratamento farmacológico
19.
Colloids Surf B Biointerfaces ; 225: 113214, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893664

RESUMO

Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.


Assuntos
Produtos Biológicos , Nanopartículas , Sistemas de Liberação de Medicamentos , Nanotecnologia , Nanomedicina
20.
Bioeng Transl Med ; 8(3): e10460, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206232

RESUMO

Retinal ischemia-reperfusion (RIR) injury is involved in the pathogenesis of various vision-threatening diseases. The overproduction of reactive oxygen species (ROS) is thought to be the main cause of RIR injury. A variety of natural products, including quercetin (Que), exhibit potent antioxidant activity. However, the lack of an efficient delivery system for hydrophobic Que and the presence of various intraocular barriers limit the effective retinal delivery of Que in clinical settings. In this study, we encapsulated Que into ROS-responsive mitochondria-targeted liposomes (abbreviated to Que@TPP-ROS-Lips) to achieve the sustained delivery of Que to the retina. The intracellular uptake, lysosome escape ability, and mitochondria targeting ability of Que@TPP-ROS-Lips were evaluated in R28 retinal cells. Treating R28 cells with Que@TPP-ROS-Lips significantly ameliorated the decrease in ATP content, ROS generation, and increase in the release of lactate dehydrogenase in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. In a rat model, the intravitreal injection of Que@TPP-ROS-Lips 24 h after inducing retinal ischemia significantly enhanced retinal electrophysiological recovery and reduced neuroinflammation, oxidative stress, and apoptosis. Que@TPP-ROS-Lips were taken up by retina for at least 14 days after intravitreal administration. Molecular docking and functional biological experiments revealed that Que targets FOXO3A to inhibit oxidative stress and inflammation. Que@TPP-ROS-Lips also partially inhibited the p38 MAPK signaling pathway, which contributes to oxidative stress and inflammation. In conclusion, our new platform for ROS-responsive and mitochondria-targeted drug release shows promise for the treatment of RIR injury and promotes the clinical application of hydrophobic natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA