Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(1): 369-389, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173348

RESUMO

Maize (Zea mays) originated in southern Mexico and has spread over a wide latitudinal range. Maize expansion from tropical to temperate regions has necessitated a reduction of its photoperiod sensitivity. In this study, we cloned a quantitative trait locus (QTL) regulating flowering time in maize and show that the maize ortholog of Arabidopsis thaliana EARLY FLOWERING3, ZmELF3.1, is the causal locus. We demonstrate that ZmELF3.1 and ZmELF3.2 proteins can physically interact with ZmELF4.1/4.2 and ZmLUX1/2, to form evening complex(es; ECs) in the maize circadian clock. Loss-of-function mutants for ZmELF3.1/3.2 and ZmLUX1/2 exhibited delayed flowering under long-day and short-day conditions. We show that EC directly represses the expression of several flowering suppressor genes, such as the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) genes ZmCCT9 and ZmCCT10, ZmCONSTANS-LIKE 3, and the PSEUDORESPONSE REGULATOR (PRR) genes ZmPRR37a and ZmPRR73, thus alleviating their inhibition, allowing florigen gene expression and promoting flowering. Further, we identify two closely linked retrotransposons located in the ZmELF3.1 promoter that regulate the expression levels of ZmELF3.1 and may have been positively selected during postdomestication spread of maize from tropical to temperate regions during the pre-Columbian era. These findings provide insights into circadian clock-mediated regulation of photoperiodic flowering in maize and new targets of genetic improvement for breeding.


Assuntos
Arabidopsis , Zea mays , Zea mays/metabolismo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Aclimatação/genética , Fotoperíodo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
J Virol ; 98(2): e0135823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226810

RESUMO

Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Criança , Humanos , Camundongos , Anticorpos Antivirais , Modelos Animais de Doenças , Enterovirus/patogenicidade , Enterovirus/fisiologia , Enterovirus Humano A , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Expressão Gênica , Doença de Mão, Pé e Boca/genética , Fosfatidilinositol 3-Quinases , Virulência
3.
Dev Dyn ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516819

RESUMO

The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.

4.
Curr Issues Mol Biol ; 46(7): 6633-6645, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057037

RESUMO

At the beginning of the 2019 coronavirus disease (COVID-19) pandemic, airway allergic diseases such as asthma and allergic rhinitis (AR) were considered as risk factors for COVID-19, as they would aggravate symptoms. With further research, more and more literature has shown that airway allergic disease may not be a high-risk factor, but may be a protective factor for COVID-19 infection, which is closely related to its low-level expression of the ACE2 receptor and the complex cytokines network as underlying molecular regulatory mechanisms. In addition, steroid hormones and age factors could not be ignored. In this review, we have summarized some current evidence on the relationship between COVID-19 and allergic rhinitis to highlight the underlying mechanisms of COVID-19 infection and provide novel insights for its prevention and treatment. The key findings show that allergic rhinitis and its related molecular mechanisms may have a protective effect against COVID-19 infection.

5.
New Phytol ; 241(1): 490-503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858961

RESUMO

Tassel branch number (TBN) is a key agronomic trait for adapting to high-density planting and grain yield in maize. However, the molecular regulatory mechanisms underlying tassel branching are still largely unknown. Here, we used molecular and genetic studies together to show that ZmELF3.1 plays a critical role in regulating TBN in maize. Previous studies showed that ZmELF3.1 forms the evening complex through interacting with ZmELF4 and ZmLUX to regulate flowering in maize and that RA2 and TSH4 (ZmSBP2) suppresses and promotes TBN in maize, respectively. In this study, we show that loss-of-function mutants of ZmELF3.1 exhibit a significant increase of TBN. We also show that RA2 directly binds to the promoter of TSH4 and represses its expression, thus leading to reduced TBN. We further demonstrate that ZmELF3.1 directly interacts with both RA2 and ZmELF4.2 to form tri-protein complexes that further enhance the binding of RA2 to the promoter of TSH4, leading to suppressed TSH4 expression and consequently decreased TBN. Our combined results establish a novel functional link between the ELF3-ELF4-RA2 complex and miR156-SPL regulatory module in regulating tassel branching and provide a valuable target for genetic improvement of tassel branching in maize.


Assuntos
Inflorescência , Proteínas de Plantas , Locos de Características Quantitativas , Zea mays , Agricultura , Inflorescência/genética , Fenótipo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063036

RESUMO

BACKGROUND: As a common soft tissue sarcoma, liposarcoma (LPS) is a heterogeneous malignant tumor derived from adipose tissue. Due to the high risk of metastasis and recurrence, the prognosis of LPS remains unfavorable. To improve clinical treatment, a robust risk prediction model is essential to evaluate the prognosis of LPS patients. METHODS: By comprehensive analysis of data derived from GEO datasets, differentially expressed genes (DEGs) were obtained. Univariate and Lasso Cox regressions were subsequently employed to reveal distant recurrence-free survival (DRFS)-associated DEGs and develop a prognostic gene signature, which was assessed by Kaplan-Meier survival and ROC curve. GSEA and immune infiltration analyses were conducted to illuminate molecular mechanisms and immune correlations of this model in LPS progression. Furthermore, a correlation analysis was involved to decipher the therapeutic significance of this model for LPS. RESULTS: A six-gene signature was developed to predict DRFS of LPS patients and showed higher precision performance in more aggressive LPS subtypes. Then, a nomogram was further established for clinical application based on this risk model. Via GSEA, the high-risk group was significantly enriched in cell cycle-related pathways. In the LPS microenvironment, neutrophils, memory B cells and resting mast cells exhibited significant differences in cell abundance between high-risk and low-risk patients. Moreover, this model was significantly correlated with therapeutic targets. CONCLUSION: A prognostic six-gene signature was developed and significantly associated with cell cycle pathways and therapeutic target genes, which could provide new insights into risk assessment of LPS progression and therapeutic strategies for LPS patients to improve their prognosis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Lipossarcoma , Microambiente Tumoral , Humanos , Lipossarcoma/genética , Lipossarcoma/imunologia , Lipossarcoma/patologia , Lipossarcoma/mortalidade , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Transcriptoma , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Nomogramas , Masculino , Feminino , Estimativa de Kaplan-Meier , Curva ROC
8.
New Phytol ; 238(1): 142-154, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636793

RESUMO

Root lodging poses a major threat to maize production, resulting in reduced grain yield and quality, and increased harvest costs. Here, we combined expressional, genetic, and cytological studies to demonstrate a role of ZmYUC2 and ZmYUC4 in regulating gravitropic response of the brace root and lodging resistance in maize. We show that both ZmYUC2 and ZmYUC4 are preferentially expressed in root tips with partially overlapping expression patterns, and the protein products of ZmYUC2 and ZmYUC4 are localized in the cytoplasm and endoplasmic reticulum, respectively. The Zmyuc4 single mutant and Zmyuc2/4 double mutant exhibit enlarged brace root angle compared with the wild-type plants, with larger brace root angle being observed in the Zmyuc2/4 double mutant. Consistently, the brace root tips of the Zmyuc4 single mutant and Zmyuc2/4 double mutant accumulate less auxin and are defective in proper reallocation of auxin in response to gravi-stimuli. Furthermore, we show that the Zmyuc4 single mutant and the Zmyuc2/4 double mutant display obviously enhanced root lodging resistance. Our combined results demonstrate that ZmYUC2- and ZmYUC4-mediated local auxin biosynthesis is required for normal gravity response of the brace roots and provide effective targets for breeding root lodging resistant maize cultivars.


Assuntos
Gravitropismo , Zea mays , Zea mays/metabolismo , Gravitropismo/fisiologia , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo
9.
Mol Psychiatry ; 27(2): 1205-1216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728799

RESUMO

Evidence suggests that complex interactions between the immune system and brain have important etiological and therapeutic implications in schizophrenia. However, the detailed cellular and molecular basis of immune dysfunction in schizophrenia remains poorly characterized. To better understand the immune changes and molecular pathways, we systemically compared the cytokine responses of peripheral blood mononuclear cells (PBMCs) derived from patients with schizophrenia and controls against bacterial, fungal, and purified microbial ligands, and identified aberrant cytokine response patterns to various pathogens, as well as reduced cytokine production after stimulation with muramyl dipeptide (MDP) in schizophrenia. Subsequently, we performed single-cell RNA sequencing on unstimulated and stimulated PBMCs from patients and controls and revealed widespread suppression of antiviral and inflammatory programs as well as impaired chemokine/cytokine-receptor interaction networks in various immune cell subpopulations of schizophrenic patients after MDP stimulation. Moreover, serum MDP levels were elevated in these patients and correlated with the course of the disease, suggesting increased bacterial translocation along with disease progression. In vitro assays revealed that MDP pretreatment altered the functional response of normal PBMCs to its re-stimulation, which partially recapitulated the impaired immune function in schizophrenia. In conclusion, we delineated the molecular and cellular landscape of impaired immune function in schizophrenia, and proposed a mutual interplay between innate immune impairment, reduced pathogen clearance, increased MDP translocation along schizophrenia development, and blunted innate immune response. These findings provide new insights into the pathogenic mechanisms that drive systemic immune activation, neuroinflammation, and brain abnormalities in schizophrenia.


Assuntos
Citocinas , Esquizofrenia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Bactérias/metabolismo , Citocinas/metabolismo , Fungos/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Esquizofrenia/metabolismo
10.
Crit Rev Food Sci Nutr ; : 1-9, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341701

RESUMO

Despite a multitude of investigations assessing the impact of green coffee extract supplementation on obesity indices, there is still a great deal of heated debate regarding the benefits of this intervention in obesity management. Therefore, in order to clarify the effect of green coffee extract on waist circumference (WC), body mass index (BMI) and body weight (BW), we conducted an umbrella review of interventional meta-analyses. The Web of Science, Scopus, PubMed/Medline, and Embase databases were searched using specific keywords and word combinations. The umbrella meta-analysis was performed using the Stata software version 17 (Stata Corp. College Station, Texas, USA). We pooled effect sizes (ES) and confidence intervals (CI) for the outcomes using the random effects model (the DerSimonian and Laird method). In total, 5 eligible meta-analyses were included in the final quantitative assessment. Data pooled from 5 eligible papers revealed that green coffee extract can reduce BW (WMD: -1.22 kg, 95% CI: -1.53 to -0.92, p < 0.001), BMI (WMD: -0.48 kg/m2, 95% CI: -0.67 to -0.29, p < 0.001) and WC (WMD: -0.55 cm, 95% CI: -0.80 to -0.31, p < 0.001). Subgroup analyses highlighted that green coffee extract supplementation in dosages ≤600 mg/day and interventions lasting >7 wk are more likely to decrease BW. The present umbrella meta-analysis confirms the beneficial effects of green coffee extract in reducing WC, BMI, and BW. Thus, we may infer that green coffee extract can be used as a complementary therapy in the management of obesity.

11.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108172

RESUMO

Liposarcoma (LPS) is one of the most common subtypes of sarcoma with a high recurrence rate. CENPF is a regulator of cell cycle, differential expression of which has been shown to be related with various cancers. However, the prognostic value of CENPF in LPS has not been deciphered yet. Using data from TCGA and GEO datasets, the expression difference of CENPF and its effects on the prognosis or immune infiltration of LPS patients were analyzed. As results show, CENPF was significantly upregulated in LPS compared to normal tissues. Survival curves illustrated that high CENPF expression was significantly associated with adverse prognosis. Univariate and multivariate analysis suggested that CENPF expression could be an independent risk factor for LPS. CENPF was closely related to chromosome segregation, microtubule binding and cell cycle. Immune infiltration analysis elucidated a negative correlation between CENPF expression and immune score. In conclusion, CENPF not only could be considered as a potential prognostic biomarker but also a potential malignant indicator of immune infiltration-related survival for LPS. The elevated expression of CENPF reveals an unfavorable prognostic outcome and worse immune score. Thus, therapeutically targeting CENPF combined with immunotherapy might be an attractive strategy for the treatment of LPS.


Assuntos
Lipopolissacarídeos , Lipossarcoma , Humanos , Prognóstico , Biomarcadores , Lipossarcoma/genética , Lipossarcoma/terapia , Segregação de Cromossomos , Microambiente Tumoral/genética
12.
Opt Express ; 30(15): 27593-27601, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236927

RESUMO

This work presents the nonlinear dynamics of a quantum cascade laser subject to optical injection. Within the stable locking regime, the optical power shows a hysteresis behavior as a function of the detuning frequency. Outside the stable locking regime, the laser mostly produces periodic oscillations. However, the laser pumped at a high pump current also generates spiking pulsations with uniform amplitude, which occur in the vicinity of the negative locking boundary.

13.
Opt Express ; 30(5): 6618-6629, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299443

RESUMO

Broad-dynamic-range magnetometers are demanded in practical applications and fundamental research. We experimentally demonstrate a parametrically modulated atomic magnetometer with a large dynamic range by taking advantage of the high-order resonance effects. With the increase of the strength of the modulation field, both low-order and high-order resonances are well resolved and used to measure the DC or AC magnetic fields. The experimentally demonstrated sensitivity of the magnetometer based on the zeroth-order resonance is 1.5 pT/Hz, and those based on the high-order resonances are below 3 pT/Hz, making the measurement of high magnetic fields feasible under an open-loop operation. Moreover, we also demonstrated the measurement of high-frequency large AC magnetic field with the high-order resonances, and the sensitivity for the AC magnetic field based on the first-order resonance is 7 pT/Hz. Our scheme provides a new path for the development of broad-dynamic-range and miniaturized atomic magnetometers.

14.
Opt Express ; 30(24): 44309-44320, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523109

RESUMO

In optical atomic magnetometers (AMs), the light-shift caused by the circularly polarized pumping beam have a significant impact on the response and is also one of the non-negligible sources of the noise. In this paper, we develop a novel method whereby utilizing the symmetry of the frequency response in an AM to measure and cancel the light-shift. Furthermore, we theoretically analyze and experimentally verify a rapid method of magnetic field compensation and the approach is convenient to measure and cancel of the light-shift. Moreover, the influence of intensity and frequency of the pumping beam is also investigated. The proposed method of in - situ measurement and cancellation of light-shift will be particularly profitable to other optical systems based on AMs.

15.
J Infect Dis ; 223(8): 1313-1321, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33605423

RESUMO

Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and information for protecting the health of humans and cats.


Assuntos
COVID-19/transmissão , COVID-19/veterinária , SARS-CoV-2/patogenicidade , Aminoácidos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Gatos , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Masculino , Células Vero
16.
Opt Express ; 29(6): 9030-9042, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820341

RESUMO

This work theoretically investigates the frequency noise and spectral linewidth characteristics of mutually delay-coupled quantum cascade lasers, which are operated in the stable locking regime. We demonstrate that the mutual injection significantly reduces the frequency noise at proper coupling phases. However, the relative intensity noise is insensitive to the mutual injection. Influences of the pump current, the linewidth broadening factor, the coupling phase, and the delay time on the frequency noise are discussed as well. In addition, it is found that the appearance of multiple compound laser modes can deteriorate the frequency noise performance of the lasers.

17.
Opt Express ; 29(10): 15641-15652, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985261

RESUMO

We demonstrate a single-beam atomic magnetometer (AM) capable of measuring a three-axis magnetic field with high-sensitivity, achieved by applying a small DC offset field and a high frequency modulation field. To satisfy the miniaturization demand of AMs, an elliptically polarized light detuned by 50 GHz from the resonance transition center is employed. The circularly polarized component is used to polarize the alkali-metal atoms, while the linearly polarized light is used to detect the dynamics of the polarized spin under a magnetic field. Based on theoretical analysis, parameters that significantly affect the performance are optimized, and a sensitivity of 20 fT/Hz1/2 in x-axis, 25 fT/Hz1/2 in y-axis, 30 fT/Hz1/2 in z-axis is achieved with a miniature 4 × 4 × 4 mm 87Rb vapor cell. Moreover, we also verify that the operation principle of AMs can be used to null background magnetic fields in-situ with isotropic compensation resolution of 6.7 pT, which provides an effectively precise method for zeroing ambient magnetic field. The high-sensitivity operating of an elliptically-polarized-laser-based magnetometer provides prospective futures for constructing a compact, low-cost AM, which is particularly applicable for non-invasive bio-magnetic imaging such as array-based magnetoencephalography (MEG) and magnetocardiography (MCG).

18.
Int J Neuropsychopharmacol ; 24(1): 32-39, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32808022

RESUMO

BACKGROUND: Neuroticism is a strong predictor for a variety of social and behavioral outcomes, but the etiology is still unknown. Our study aims to provide a comprehensive investigation of causal effects of serum metabolome phenotypes on risk of neuroticism using Mendelian randomization (MR) approaches. METHODS: Genetic associations with 486 metabolic traits were utilized as exposures, and data from a large genome-wide association study of neuroticism were selected as outcome. For MR analysis, we used the standard inverse-variance weighted (IVW) method for primary MR analysis and 3 additional MR methods (MR-Egger, weighted median, and MR pleiotropy residual sum and outlier) for sensitivity analyses. RESULTS: Our study identified 31 metabolites that might have causal effects on neuroticism. Of the 31 metabolites, uric acid and paraxanthine showed robustly significant association with neuroticism in all MR methods. Using single nucleotide polymorphisms as instrumental variables, a 1-SD increase in uric acid was associated with approximately 30% lower risk of neuroticism (OR: 0.77; 95% CI: 0.62-0.95; PIVW = 0.0145), whereas a 1-SD increase in paraxanthine was associated with a 7% higher risk of neuroticism (OR: 1.07; 95% CI: 1.01-1.12; PIVW = .0145). DISCUSSION: Our study suggested an increased level of uric acid was associated with lower risk of neuroticism, whereas paraxanthine showed the contrary effect. Our study provided novel insight by combining metabolomics with genomics to help understand the pathogenesis of neuroticism.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Metaboloma/genética , Neuroticismo , Teofilina/sangue , Ácido Úrico/sangue , Adulto , Humanos , Polimorfismo de Nucleotídeo Único
19.
Mol Psychiatry ; 25(11): 2905-2918, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31391545

RESUMO

Accumulating evidence suggests that gut microbiota plays a role in the pathogenesis of schizophrenia via the microbiota-gut-brain axis. This study sought to investigate whether transplantation of fecal microbiota from drug-free patients with schizophrenia into specific pathogen-free mice could cause schizophrenia-like behavioral abnormalities. The results revealed that transplantation of fecal microbiota from schizophrenic patients into antibiotic-treated mice caused behavioral abnormalities such as psychomotor hyperactivity, impaired learning and memory in the recipient animals. These mice also showed elevation of the kynurenine-kynurenic acid pathway of tryptophan degradation in both periphery and brain, as well as increased basal extracellular dopamine in prefrontal cortex and 5-hydroxytryptamine in hippocampus, compared with their counterparts receiving feces from healthy controls. Furthermore, colonic luminal filtrates from the mice transplanted with patients' fecal microbiota increased both kynurenic acid synthesis and kynurenine aminotransferase II activity in cultured hepatocytes and forebrain cortical slices. Sixty species of donor-derived bacteria showed significant difference between the mice colonized with the patients' and the controls' fecal microbiota, highlighting 78 differentially enriched functional modules including tryptophan biosynthesis function. In conclusion, our study suggests that the abnormalities in the composition of gut microbiota contribute to the pathogenesis of schizophrenia partially through the manipulation of tryptophan-kynurenine metabolism.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Cinurenina/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/microbiologia , Psicologia do Esquizofrênico , Animais , Estudos de Casos e Controles , Dopamina/metabolismo , Humanos , Ácido Cinurênico/metabolismo , Masculino , Camundongos , Serotonina/metabolismo , Triptofano/metabolismo
20.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960515

RESUMO

The development of artificial intelligence and the Internet of things has motivated extensive research on self-powered flexible sensors. The conventional sensor must be powered by a battery device, while innovative self-powered sensors can provide power for the sensing device. Self-powered flexible sensors can have higher mobility, wider distribution, and even wireless operation, while solving the problem of the limited life of the battery so that it can be continuously operated and widely utilized. In recent years, the studies on piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) have mainly concentrated on self-powered flexible sensors. Self-powered flexible sensors based on PENGs and TENGs have been reported as sensing devices in many application fields, such as human health monitoring, environmental monitoring, wearable devices, electronic skin, human-machine interfaces, robots, and intelligent transportation and cities. This review summarizes the development process of the sensor in terms of material design and structural optimization, as well as introduces its frontier applications in related fields. We also look forward to the development prospects and future of self-powered flexible sensors.


Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA