Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Structure ; 15(8): 928-41, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17697998

RESUMO

NikD is an unusual amino-acid-oxidizing enzyme that contains covalently bound FAD, catalyzes a 4-electron oxidation of piperideine-2-carboxylic acid to picolinate, and plays a critical role in the biosynthesis of nikkomycin antibiotics. Crystal structures of closed and open forms of nikD, a two-domain enzyme, have been determined to resolutions of 1.15 and 1.9 A, respectively. The two forms differ by an 11 degrees rotation of the catalytic domain with respect to the FAD-binding domain. The active site is inaccessible to solvent in the closed form; an endogenous ligand, believed to be picolinate, is bound close to and parallel with the flavin ring, an orientation compatible with redox catalysis. The active site is solvent accessible in the open form, but the picolinate ligand is approximately perpendicular to the flavin ring and a tryptophan is stacked above the flavin ring. NikD also contains a mobile cation binding loop.


Assuntos
Aminoglicosídeos/biossíntese , Antifúngicos/biossíntese , Oxirredutases/química , Oxirredutases/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/genética , Antifúngicos/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxirredutases/genética , Ácidos Picolínicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise Espectral Raman , Especificidade por Substrato
2.
J Mol Biol ; 360(5): 1000-18, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16820168

RESUMO

The crystal structure of heterotetrameric sarcosine oxidase (TSOX) from Pseudomonas maltophilia has been determined at 1.85 A resolution. TSOX contains three coenzymes (FAD, FMN and NAD+), four different subunits (alpha, 103 kDa; beta, 44 kDa; gamma, 21 kDa; delta, 11 kDa) and catalyzes the oxidation of sarcosine (N-methylglycine) to yield hydrogen peroxide, glycine and formaldehyde. In the presence of tetrahydrofolate, the oxidation of sarcosine is coupled to the formation of 5,10-methylenetetrahydrofolate. The NAD+ and putative folate binding sites are located in the alpha-subunit. The FAD binding site is in the beta-subunit. FMN is bound at the interface of the alpha and beta-subunits. The FAD and FMN rings are separated by a short segment of the beta-subunit with the closest atoms located 7.4 A apart. Sulfite, an inhibitor of oxygen reduction, is bound at the FMN site. 2-Furoate, a competitive inhibitor with respect to sarcosine, is bound at the FAD site. The sarcosine dehydrogenase and 5,10-methylenetetrahydrofolate synthase sites are 35 A apart but connected by a large internal cavity (approximately 10,000 A3). An unexpected zinc ion, coordinated by three cysteine and one histidine side-chains, is bound to the delta-subunit. The N-terminal half of the alpha subunit of TSOX (alphaA) is closely similar to the FAD-binding domain of glutathione reductase but with NAD+ replacing FAD. The C-terminal half of the alpha subunit of TSOX (alphaB) is similar to the C-terminal half of dimethylglycine oxidase and the T-protein of the glycine cleavage system, proteins that bind tetrahydrofolate. The beta-subunit of TSOX is very similar to monomeric sarcosine oxidase. The gamma-subunit is similar to the C-terminal sub-domain of alpha-TSOX. The delta-subunit shows little similarity with any PDB entry. The alphaA domain/beta-subunit sub-structure of TSOX closely resembles the alphabeta dimer of L-proline dehydrogenase, a heteroctameric protein (alphabeta)4 that shows highest overall similarity to TSOX.


Assuntos
Modelos Moleculares , Pseudomonas/enzimologia , Sarcosina Oxidase/química , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Cristalografia por Raios X , Glicina/química , Ligação de Hidrogênio , Leucovorina/química , Oxirredução , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Sarcosina/química , Sulfitos/química , Tetra-Hidrofolatos/química , Zinco/química
3.
Biochemistry ; 46(3): 819-27, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17223703

RESUMO

The flavoenzyme nikD is required for the biosynthesis of nikkomycin antibiotics. NikD exhibits an unusual long wavelength absorption band attributed to a charge transfer complex of FAD with an unknown charge transfer donor. NikD crystals contain an endogenous active site ligand. At least four different compounds are detected in nikD extracts, including variable amounts of two ADP derivatives that bind to the enzyme's dinucleotide binding motif in competition with FAD, picolinate (0.07 mol/mol of nikD) and an unknown picolinate-like compound. Picolinate, the product of the physiological catalytic reaction, matches the properties deduced for the active site ligand in nikD crystals. The charge transfer band is eliminated upon mixing nikD with excess picolinate but not by a reversible unfolding procedure that removes the picolinate-like compound, ruling out both compounds as the intrinsic charge transfer donor. Mutation of Trp355 to Phe eliminates the charge transfer band, accompanied by a 30-fold decrease in substrate binding affinity. The results provide definitive evidence for Trp355 as the intrinsic charge transfer donor. The indole ring of Trp355 is coplanar with or perpendicular to the flavin ring in "open" or "closed" crystalline forms of nikD, respectively. Importantly, a coplanar configuration is required for charge transfer interaction. Absorption in the long wavelength region therefore constitutes a valuable probe for monitoring conformational changes in solution that are likely to be important in nikD catalysis.


Assuntos
Aminoglicosídeos/biossíntese , Flavoproteínas/metabolismo , Triptofano/química , Difosfato de Adenosina/análogos & derivados , Sítios de Ligação , Cristalização , Flavina-Adenina Dinucleotídeo/metabolismo , Mutação , Ácidos Picolínicos/metabolismo , Triptofano/genética
4.
Biochemistry ; 45(19): 5985-92, 2006 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-16681370

RESUMO

Monomeric sarcosine oxidase is a flavoenzyme that catalyzes the oxidation of the methyl group in sarcosine (N-methylglycine). Rapid reaction kinetic studies under anaerobic conditions at pH 8.0 show that the enzyme forms a charge transfer Michaelis complex with sarcosine (E-FAD(ox).sarcosine) that exhibits an intense long-wavelength absorption band (lambda(max) = 516 nm, epsilon(516) = 4800 M(-)(1) cm(-)(1)). Since charge transfer interaction with sarcosine as donor is possible only with the anionic form of the amino acid, the results indicate that the pK(a) of enzyme-bound sarcosine must be considerably lower than the free amino acid (pK(a) = 10.0). No redox intermediate is detectable during sarcosine oxidation, as judged by the isosbestic spectral course observed for conversion of E-FAD(ox).sarcosine to reduced enzyme at 25 or 5 degrees C. The limiting rate of the reductive half-reaction at 25 degrees C (140 +/- 3 s(-)(1)) is slightly faster than turnover (117 +/- 3 s(-)(1)). The kinetics of formation of the Michaelis charge transfer complex can be directly monitored at 5 degrees C where the reduction rate is 4.5-fold slower and complex stability is increased 2-fold. The observed rate of complex formation exhibits a hyperbolic dependence on sarcosine concentration with a finite Y-intercept, consistent with a mechanism involving formation of an initial complex followed by isomerization to yield a more stable complex. Similar results are obtained for charge transfer complex formation with methylthioacetate. The observed kinetics are consistent with structural studies which show that a conformational change occurs upon binding of methylthioacetate and other competitive inhibitors.


Assuntos
Sarcosina Oxidase/metabolismo , Cinética , Modelos Moleculares , Sarcosina Oxidase/química , Análise Espectral/métodos
5.
Biochemistry ; 44(51): 16866-74, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16363800

RESUMO

Monomeric sarcosine oxidase (MSOX) binds the L-proline zwitterion (pKa = 10.6). The reactive substrate anion is generated by ionization of the ES complex (pKa = 8.0). Tyr317 was mutated to Phe to determine whether this step might involve proton transfer to an active site base. The mutation does not eliminate the ionizable group in the ES complex (pKa = 8.9) but does cause a 20-fold decrease in the maximum rate of the reductive half-reaction. Kinetically determined Kd values for the ES complex formed with L-proline agree with results obtained in spectral titrations with the wild-type or mutant enzyme. Unlike the wild-type enzyme, Kd values with the mutant enzyme are pH-dependent, suggesting that the mutation has perturbed the pKa of a group that affects the Kd. As compared with the wild-type enzyme, an increase in charge transfer band energy is observed for mutant enzyme complexes with substrate analogues while a 10-fold decrease in the charge transfer band extinction coefficient is found for the complex with the L-proline anion. The results eliminate Tyr317 as a possible acceptor of the proton released upon substrate ionization. Since previous studies rule out the only other nearby base, we conclude that L-proline is the ionizable group in the ES complex and that amino acids are activated for oxidation upon binding to MSOX by stabilization of the reactive substrate anion. Tyr317 may play a role in substrate activation and optimizing binding, as judged by the effects of its mutation on the observed pKa, reaction rates, and charge transfer bands.


Assuntos
Prolina/química , Sarcosina Oxidase/química , Acetatos/química , Algoritmos , Aminas/química , Substituição de Aminoácidos , Ânions/química , Bacillus/enzimologia , Sítios de Ligação/genética , Catálise , Inibidores Enzimáticos/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Mutação/genética , Oxirredução , Prolina/análogos & derivados , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sarcosina/química , Sarcosina Oxidase/genética , Espectrofotometria , Especificidade por Substrato , Titulometria , Tirosina/química , Tirosina/genética
6.
Biochemistry ; 44(47): 15444-50, 2005 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-16300392

RESUMO

Monomeric sarcosine oxidase (MSOX) is a flavoprotein that contains covalently bound FAD [8a-(S-cysteinyl)FAD] and catalyzes the oxidation of sarcosine (N-methylglycine) and other secondary amino acids, such as l-proline. Our previous studies showed that N-(cyclopropyl)glycine (CPG) acts as a mechanism-based inactivator of MSOX [Zhao, G., et al. (2000) Biochemistry 39, 14341-14347]. The reaction results in the formation of a modified reduced flavin that can be further reduced and stabilized by treatment with sodium borohydride. The borohydride-reduced CPG-modified enzyme exhibits a mass increase of 63 +/- 2 Da as compared with native MSOX. The crystal structure of the modified enzyme, solved at 1.85 A resolution, shows that FAD is the only site of modification. The modified FAD contains a fused five-membered ring, linking the C(4a) and N(5) atoms of the flavin ring, with an additional oxygen atom bound to the carbon atom attached to N(5) and a tetrahedral carbon atom at flavin C(4) with a hydroxyl group attached to C(4). On the basis of the crystal structure of the borohydride-stabilized adduct, we conclude that the labile CPG-modified flavin is a 4a,5-dihydroflavin derivative with a substituent derived from the cleavage of the cyclopropyl ring in CPG. The results are consistent with CPG-mediated inactivation in a reaction initiated by single electron transfer from the amine function in CPG to FAD in MSOX, followed by collapse of the radical pair to yield a covalently modified 4a,5-dihydroflavin.


Assuntos
Glicina/análogos & derivados , Peptídeos Cíclicos/química , Sarcosina Oxidase/química , Boroidretos/química , Cristalografia por Raios X , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Glicina/química , Estrutura Molecular , Oxirredução
7.
Biochemistry ; 41(31): 9747-50, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146940

RESUMO

Monomeric sarcosine oxidase (MSOX) contains covalently bound FAD and catalyzes the oxidation of sarcosine (N-methylglycine) and other secondary amino acids, including L-proline. The reductive half-reaction with L-proline proceeds via a rapidly attained equilibrium (K(d)) between free E(ox) and the E(ox).S complex, followed by a practically irreversible reduction step (E(ox).S --> E(red).P) associated with a rate constant, k(lim). The effect of pH on the reductive half-reaction shows that the K(d) for L-proline binding is pH-independent (pH 6.46-9.0). This indicates that MSOX binds the zwitterionic form of L-proline, the predominant species in solution at neutral pH (pK(a) = 10.6). Values for the limiting rate of reduction (k(lim)) are, however, strongly pH-dependent and indicate that an ionizable group in the E(ox).L-proline complex (pK(a) = 8.02) must be unprotonated for conversion to E(red).P. Charge-transfer interaction with L-proline as the donor and FAD as acceptor is possible only with the anionic form of L-proline. The ionizable group in the E(ox).L-proline complex is required for conversion of enzyme-bound L-proline from the zwitterionic to the reactive anionic form, as judged by the independently determined pK(a) for charge-transfer complex formation with the MSOX flavin (pK(a) = 7.94). The observation that the anionic form of L-proline with a neutral amino group is the reactive species in the reduction of MSOX is similar to that observed for other flavoenzymes that oxidize amines, including monoamine oxidase and trimethylamine dehydrogenase.


Assuntos
Oxirredutases N-Desmetilantes/química , Concentração de Íons de Hidrogênio , Cinética , Sarcosina Oxidase , Análise Espectral
8.
Biochemistry ; 41(31): 9751-64, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146941

RESUMO

Conservative mutation of His269 (to Asn, Ala, or Gln) does not-significantly affect the expression of monomeric sarcosine oxidase (MSOX), covalent flavinylation, the physicochemical properties of bound FAD, or the overall protein structure. Turnover with sarcosine and the limiting rate of the reductive half-reaction with L-proline at pH 8.0 are, however, nearly 2 orders of magnitude slower than that with with wild-type MSOX. The crystal structure of the His269Asn complex with pyrrole-2-carboxylate shows that the pyrrole ring of the inhibitor is displaced as compared with wild-type MSOX. The His269 mutants all form charge-transfer complexes with pyrrole-2-carboxylate or methylthioacetate, but the charge-transfer bands are shifted to shorter wavelengths (higher energy) as compared with wild-type MSOX. Both wild-type MSOX and the His269Asn mutant bind the zwitterionic form of L-proline. The E(ox).L-proline complex formed with the His269Asn mutant or wild-type MSOX contains an ionizable group (pK(a) = 8.0) that is required for conversion of the zwitterionic L-proline to the reactive anionic form, indicating that His269 is not the active-site base. We propose that the change in ligand orientation observed upon mutation of His269 results in a less than optimal overlap of the highest occupied orbital of the ligand with the lowest unoccupied orbital of the flavin. The postulated effect on orbital overlap may account for the increased energy of charge-transfer bands and the slower rates of electron transfer observed for mutant enzyme complexes with charge-transfer ligands and substrates, respectively.


Assuntos
Histidina/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Sequência de Bases , Catálise , Primers do DNA , Cinética , Mutagênese Sítio-Dirigida , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Conformação Proteica , Sarcosina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA