Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 28(7): 4336-4347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38551822

RESUMO

Binding affinity prediction of three-dimensional (3D) protein-ligand complexes is critical for drug repositioning and virtual drug screening. Existing approaches usually transform a 3D protein-ligand complex to a two-dimensional (2D) graph, and then use graph neural networks (GNNs) to predict its binding affinity. However, the node and edge features of the 2D graph are extracted based on invariant local coordinate systems of the 3D complex. As a result, these approaches can not fully learn the global information of the complex, such as the physical symmetry and the topological information of bonds. To address these issues, we propose a novel Equivariant Line Graph Network (ELGN) for binding affinity prediction of 3D protein-ligand complexes. The proposed ELGN firstly adds a super node to the 3D complex, and then builds a line graph based on the 3D complex. After that, ELGN uses a new E(3)-equivariant network layer to pass the messages between nodes and edges based on the global coordinate system of the 3D complex. Experimental results on two real datasets demonstrate the effectiveness of ELGN over several state-of-the-art baselines.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Biologia Computacional/métodos , Algoritmos
2.
Neural Netw ; 176: 106328, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38688067

RESUMO

Given a graph G, the network collapse problem (NCP) selects a vertex subset S of minimum cardinality from G such that the difference in the values of a given measure function f(G)-f(G∖S) is greater than a predefined collapse threshold. Many graph analytic applications can be formulated as NCPs with different measure functions, which often pose a significant challenge due to their NP-hard nature. As a result, traditional greedy algorithms, which select the vertex with the highest reward at each step, may not effectively find the optimal solution. In addition, existing learning-based algorithms do not have the ability to model the sequence of actions taken during the decision-making process, making it difficult to capture the combinatorial effect of selected vertices on the final solution. This limits the performance of learning-based approaches in non-submodular NCPs. To address these limitations, we propose a unified framework called DT-NC, which adapts the Decision Transformer to the Network Collapse problems. DT-NC takes into account the historical actions taken during the decision-making process and effectively captures the combinatorial effect of selected vertices. The ability of DT-NC to model the dependency among selected vertices allows it to address the difficulties caused by the non-submodular property of measure functions in some NCPs effectively. Through extensive experiments on various NCPs and graphs of different sizes, we demonstrate that DT-NC outperforms the state-of-the-art methods and exhibits excellent transferability and generalizability.


Assuntos
Algoritmos , Redes Neurais de Computação , Tomada de Decisões/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA