Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 42(24): e2100519, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34587305

RESUMO

The combination of excellent mechanical performances, high reprocess efficiency, and wide-range tunability for functional dynamic siloxane materials is a challenging subject. Herein, the fabrication of mechanically strong, autonomous self-healing, and fully recyclable silicone elastomers with unique photoluminescent properties by coordination of poly(dimethylsiloxane) (PDMS) containing coordination bonding motifs with Zn2+ ions is reported. Salicylaldimine groups, which are introduced into the polysiloxane backbone via mild Schiff-base reaction, coordinate with zinc ions to form elastomeric networks The obtained supramolecular elastomers have excellent mechanical properties, with the optimized tensile strength up to 10.0 MPa, which is unprecedented among the reported thermoplastic polysiloxane-based elastomers. Both mechanical properties and stress relaxation kinetics are tunable via adjusting the length of PDMS segments or the molar ratio of metal versus salicylaldimine. Furthermore, these elastomers can be conveniently healed and recycled to regain their original mechanical properties and integrity under mild conditions. In addition, this new kind of polysiloxane also exhibits coordination-enhanced fluorescence, showing great promise for preparing photoluminescent elastomers or coatings.


Assuntos
Elastômeros de Silicone
2.
Langmuir ; 34(14): 4382-4389, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29565594

RESUMO

Three silicone surfactants, 3-tris(trimethylsiloxy)silylpropyl sulfonate with different alkaline counterions (lithium, sodium, and potassium), were synthesized for the first time. Their chemical structures were confirmed by FT-IR spectra, 1H NMR, and ESI-MS, and their behaviors in aqueous solutions were investigated by surface tensiometry, electrical conductivity, dynamic light scattering, and different transmission electron microscopy techniques. These anionic silicone surfactants exhibited remarkable surface activity and could reduce the surface tension of water to as low as 19.8 mN/m at the critical aggregate concentration (CAC). The adsorption and aggregation behaviors of these surfactants were assessed by determining the adsorption efficiency, minimum average area per surfactant molecule, and thermodynamic parameters. The cryo-TEM results verified that these molecules could form vesicles in water above the CAC. Moreover, the lowest surface tension, the smallest CAC value, and the largest aggregate size have been reached with potassium counterions. Thus, the different behavior of these surfactants in water can be explained by the different sizes of the hydrated ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA