Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
2.
Cancer Res ; 84(5): 771-784, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190716

RESUMO

Colorectal cancer development and outcome are impacted by modifiable risk factors, including psychologic stress. The gut microbiota has also been shown to be linked to psychologic factors. Here, we found a marked deteriorative effect of chronic stress in multiple colorectal cancer models, including chemically induced (AOM/DSS), genetically engineered (APCmin/+), and xenograft tumor mouse models. RNA sequencing data from colon tissues revealed that expression of stemness-related genes was upregulated in the stressed colorectal cancer group by activated ß-catenin signaling, which was further confirmed by results from ex vivo organoid analyses as well as in vitro and in vivo cell tumorigenicity assays. 16S rRNA sequencing of the gut microbiota showed that chronic stress disrupted gut microbes, and antibiotic treatment and fecal microbiota transplantation abolished the stimulatory effects of chronic stress on colorectal cancer progression. Stressed colorectal cancer mice displayed a significant decrease in Lactobacillus johnsonii (L. johnsonii) abundance, which was inversely correlated with tumor load. Moreover, protocatechuic acid (PCA) was identified as a beneficial metabolite produced by L. johnsonii based on metabolome sequencing and LC/MS-MS analysis. Replenishment of L. johnsonii or PCA blocked chronic stress-induced colorectal cancer progression by decreasing ß-catenin expression. Furthermore, PCA activated the cGMP pathway, and the cGMP agonist sildenafil abolished the effects of chronic stress on colorectal cancer. Altogether, these data identify that stress impacts the gut microbiome to support colorectal cancer progression. SIGNIFICANCE: Chronic stress stimulates cancer stemness by reducing the intestinal abundance of L. johnsonii and its metabolite PCA to enhance ß-catenin signaling, forming a basis for potential strategies to circumvent stress-induced cancer aggressiveness. See related commentary by McCollum and Shah, p. 645.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Lactobacillus johnsonii , Humanos , Animais , Camundongos , Neoplasias Colorretais/metabolismo , beta Catenina/genética , Lactobacillus johnsonii/genética , RNA Ribossômico 16S/genética
3.
Int J Biol Sci ; 20(8): 3094-3112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904012

RESUMO

Atopic dermatitis (AD) is a common inflammation skin disease that involves dysregulated interplay between immune cells and keratinocytes. Interleukin-38 (IL-38), a poorly characterized IL-1 family cytokine, its role and mechanism in the pathogenesis of AD is elusive. Here, we show that IL-38 is mainly secreted by epidermal keratinocytes and highly expressed in the skin and downregulated in AD lesions. We generated IL-38 keratinocyte-specific knockout mice (K14Cre/+-IL-38f/f ) and induced AD models by 2,4-dinitrofluorobenzene (DNFB). Unexpectedly, after treatment with DNFB, K14Cre/+-IL-38f/f mice were less susceptible to cutaneous inflammation of AD. Moreover, keratinocyte-specific deletion of IL-38 suppressed the migration of Langerhans cells (LCs) into lymph nodes which results in disturbed differentiation of CD4+T cells and decreased the infiltration of immune cells into AD lesions. LCs are a type of dendritic cell that reside specifically in the epidermis and regulate immune responses. We developed LC-like cells in vitro from mouse bone marrow (BM) and treated with recombined IL-38. The results show that IL-38 depended on IL-36R, activated the phosphorylated expression of IRAK4 and NF-κB P65 and upregulated the expression of CCR7 to promoting the migration of LCs, nevertheless, the upregulation disappeared with the addition of IL-36 receptor antagonist (IL-36RA), IRAK4 or NF-κB P65 inhibitor. Furthermore, after treatment with IRAK4 inhibitors, the experimental AD phenotypes were alleviated and so IRAK4 is considered a promising target for the treatment of inflammatory diseases. Overall, our findings indicated a potential pathway that IL-38 depends on IL-36R, leading to LCs migration to promote AD by upregulating CCR7 via IRAK4/NF-κB and implied the prevention and treatment of AD, supporting potential clinical utilization of IRAK4 inhibitors in AD treatment.


Assuntos
Movimento Celular , Dermatite Atópica , Células de Langerhans , Animais , Dermatite Atópica/metabolismo , Células de Langerhans/metabolismo , Camundongos , Camundongos Knockout , Interleucina-1/metabolismo , Queratinócitos/metabolismo , Dinitrofluorbenzeno , NF-kappa B/metabolismo , Interleucinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA