Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8018): 891-898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926617

RESUMO

The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill1-3, yet, quantifying the sources of skilful predictions is a long-standing challenge4-7. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible8-10, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16-18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO's seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO's long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes' contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework's holistic treatment of ENSO's global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.

2.
Am J Hum Genet ; 111(5): 841-862, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593811

RESUMO

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Assuntos
Transdiferenciação Celular , Fibroblastos , Neurônios , Análise de Sequência de RNA , Humanos , Transdiferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , Análise de Sequência de RNA/métodos , Neurônios/metabolismo , Neurônios/citologia , Transcriptoma , Reprodutibilidade dos Testes , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , RNA-Seq/métodos , Feminino , Masculino
3.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669183

RESUMO

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Assuntos
Proteínas de Transporte , Polaridade Celular , Proteínas de Membrana , Coluna Vertebral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Humanos , Camundongos , Polaridade Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Coluna Vertebral/anormalidades , Coluna Vertebral/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Escoliose/genética , Escoliose/congênito , Escoliose/metabolismo , Via de Sinalização Wnt/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Feminino
4.
Hum Mol Genet ; 32(19): 2913-2928, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37462524

RESUMO

Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.


Assuntos
Anormalidades Múltiplas , Escoliose , Animais , Humanos , Escoliose/genética , Peixe-Zebra/genética , Coluna Vertebral/anormalidades , Anormalidades Múltiplas/genética , Mutação de Sentido Incorreto , Colágeno Tipo XI/genética
5.
Am J Hum Genet ; 109(2): 270-281, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063063

RESUMO

In recent years, exome sequencing (ES) has shown great utility in the diagnoses of Mendelian disorders. However, after rigorous filtering, a typical ES analysis still involves the interpretation of hundreds of variants, which greatly hinders the rapid identification of causative genes. Since the interpretations of ES data require comprehensive clinical analyses, taking clinical expertise into consideration can speed the molecular diagnoses of Mendelian disorders. To leverage clinical expertise to prioritize candidate genes, we developed PhenoApt, a phenotype-driven gene prioritization tool that allows users to assign a customized weight to each phenotype, via a machine-learning algorithm. Using the ability to rank causative genes in top-10 lists as an evaluation metric, baseline analysis demonstrated that PhenoApt outperformed previous phenotype-driven gene prioritization tools by a relative increase of 22.7%-140.0% in three independent, real-world, multi-center cohorts (cohort 1, n = 185; cohort 2, n = 784; and cohort 3, n = 208). Additional trials showed that, by adding weights to clinical indications, which should be explained by the causative gene, PhenoApt performance was improved by a relative increase of 37.3% in cohort 2 (n = 471) and 21.4% in cohort 3 (n = 208). Moreover, PhenoApt could assign an intrinsic weight to each phenotype based on the likelihood of its being a Mendelian trait using term frequency-inverse document frequency techniques. When clinical indications were assigned with intrinsic weights, PhenoApt performance was improved by a relative increase of 23.7% in cohort 2 and 15.5% in cohort 3. For the integration of PhenoApt into clinical practice, we developed a user-friendly website and a command-line tool.


Assuntos
Doenças Genéticas Inatas/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual/genética , Aprendizado de Máquina , Microcefalia/genética , Nistagmo Congênito/genética , Escoliose/genética , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Testes Genéticos , Genótipo , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Microcefalia/diagnóstico , Microcefalia/patologia , Nistagmo Congênito/diagnóstico , Nistagmo Congênito/patologia , Fenótipo , Escoliose/diagnóstico , Escoliose/patologia , Software , Sequenciamento do Exoma
6.
J Med Genet ; 61(7): 666-676, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38724173

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS: Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS: SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION: This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.


Assuntos
Metabolismo dos Carboidratos , Escoliose , Humanos , Escoliose/genética , Escoliose/patologia , Adolescente , Feminino , Masculino , Metabolismo dos Carboidratos/genética , Predisposição Genética para Doença , Criança , Sequenciamento do Exoma , Transportadores de Ácidos Monocarboxílicos/genética , Estudos de Casos e Controles , Estudos de Associação Genética , Mutação
7.
Am J Hum Genet ; 108(2): 337-345, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434492

RESUMO

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is associated with congenital absence of the uterus, cervix, and the upper part of the vagina; it is a sex-limited trait. Disrupted development of the Müllerian ducts (MD)/Wölffian ducts (WD) through multifactorial mechanisms has been proposed to underlie MRKHS. In this study, exome sequencing (ES) was performed on a Chinese discovery cohort (442 affected subjects and 941 female control subjects) and a replication MRKHS cohort (150 affected subjects of mixed ethnicity from North America, South America, and Europe). Phenotypic follow-up of the female reproductive system was performed on an additional cohort of PAX8-associated congenital hypothyroidism (CH) (n = 5, Chinese). By analyzing 19 candidate genes essential for MD/WD development, we identified 12 likely gene-disrupting (LGD) variants in 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1), while LGD variants in these genes were not detected in control samples (p = 1.27E-06). Interestingly, a sex-limited penetrance with paternal inheritance was observed in multiple families. One additional PAX8 LGD variant from the replication cohort and two missense variants from both cohorts were revealed to cause loss-of-function of the protein. From the PAX8-associated CH cohort, we identified one individual presenting a syndromic condition characterized by CH and MRKHS (CH-MRKHS). Our study demonstrates the comprehensive utilization of knowledge from developmental biology toward elucidating genetic perturbations, i.e., rare pathogenic alleles involving the same loci, contributing to human birth defects.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Ductos Paramesonéfricos/anormalidades , Ductos Paramesonéfricos/crescimento & desenvolvimento , Mutação , Ductos Mesonéfricos/crescimento & desenvolvimento , Adulto , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Códon sem Sentido , Feminino , Estudos de Associação Genética , Pleiotropia Genética , Proteínas Homeobox A10/genética , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição PAX8/genética , Herança Paterna , Penetrância , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética , Ductos Mesonéfricos/anormalidades
8.
Brain ; 146(8): 3347-3363, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36869767

RESUMO

Recurrent proximal 16p11.2 deletion (16p11.2del) is a risk factor for diverse neurodevelopmental disorders with incomplete penetrance and variable expressivity. Although investigation with human induced pluripotent stem cell models has confirmed disruption of neuronal development in 16p11.2del neuronal cells, which genes are responsible for abnormal cellular phenotypes and what determines the penetrance of neurodevelopmental abnormalities are unknown. We performed haplotype phasing of the 16p11.2 region in a 16p11.2del neurodevelopmental disorders cohort and generated human induced pluripotent stem cells for two 16p11.2del families with distinct residual haplotypes and variable neurodevelopmental disorder phenotypes. Using transcriptomic profiles and cellular phenotypes of the human induced pluripotent stem cell-differentiated cortex neuronal cells, we revealed MAPK3 to be a contributor to dysfunction in multiple pathways related to early neuronal development, with altered soma and electrophysiological properties in mature neuronal cells. Notably, MAPK3 expression in 16p11.2del neuronal cells varied on the basis of a 132 kb 58 single nucleotide polymorphism (SNP) residual haplotype, with the version composed entirely of minor alleles associated with reduced MAPK3 expression. Ten SNPs on the residual haplotype were mapped to enhancers of MAPK3. We functionally validated six of these SNPs by luciferase assay, implicating them in the residual haplotype-specific differences in MAPK3 expression via cis-regulation. Finally, the analysis of three different cohorts of 16p11.2del subjects showed that this minor residual haplotype is associated with neurodevelopmental disorder phenotypes in 16p11.2del carriers.


Assuntos
Deleção Cromossômica , Células-Tronco Pluripotentes Induzidas , Humanos , Haplótipos , Fenótipo , Diferenciação Celular
9.
Ecotoxicol Environ Saf ; 280: 116587, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878336

RESUMO

Early cyanobacterial blooms studies observed that exposure to blue-green algae led to fish gills impairment. The objective of this work was to evaluate the toxic mechanisms of exudates of Microcystis aeruginosa (MaE) on fish gills. In this study, the toxic mechanism of MaE (2×106 cells/mL) and one of its main components phytosphingosine (PHS) with two concentrations 2.9 ng/mL and 145 ng/mL were conducted by integrating histopathology, biochemical biomarkers, and transcriptomics techniques in Sinocyclocheilus grahami (S. grahami) for 96 h exposure. Damaged gill tissue with epithelial hyperplasia and hypertrophy, remarkable Na+/K+-ATPase (NKA) enzyme activity, disrupted the redox homeostats including lipid peroxidation and inflammatory responses were observed in the fish of MaE exposure group. Compare to MaE exposure, two concentrations of PHS exposure appeared to be a trend of lower degree of tissue damage, NKA activity and oxidative stress, but induced obviously lipid metabolism disorder with higher triglycerides, total cholesterol and total bile acid, which might be responsible for inflammation responses in fish gill. By transcriptome analysis, MaE exposure were primarily enriched in pathways related to gill function and immune response. PHS exposure, with higher number of differentially expressed genes (DEGs), were enriched in Toll-like receptor (TLR), Mitogen-Activated Protein Kinase (MAPK) and NOD-like receptor protein 3 (NLRP3) pathways. We concluded that MaE and PHS were induced the inflammatory responses, with oxidative stress-induced inflammation for MaE exposure but lipid metabolism disorder-induced inflammation for PHS exposure. The present study provided two toxin-induced gill inflammation response pathways under cyanobacterial blooms, which could be a scientific basis for the ecological and health risk assessment in the aquatic environment.


Assuntos
Brânquias , Microcystis , Estresse Oxidativo , Animais , Brânquias/efeitos dos fármacos , Brânquias/patologia , Estresse Oxidativo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos
10.
Ecotoxicol Environ Saf ; 272: 116044, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295732

RESUMO

5-Methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT) is a novel psychoactive substance exhibiting a tryptamine structure. Despite its increasing prevalence, the environmental impact of 5-MeO-MiPT remains unexplored. Our prior investigation revealed that 5-MeO-MiPT induced inhibited spontaneous movement and prompted anxiety-like behavior in adult zebrafish-a validated toxicological model. To elucidate this phenomenon and establish a correlation between metabolomics and behavioral changes induced by 5-MeO-MiPT, zebrafish were administered varying drug concentrations. Zebrafishes were subjected to injections of different 5-MeO-MiPT concentrations. Subsequent metabolomic analysis of endogenous metabolites affected by the drug unveiled substantial variations in metabolic levels between the control group and the drug-injected cohorts. A total of 22 distinct metabolites emerged as potential biomarkers. Further scrutiny identified seven pathways significantly influenced by 5-MeO-MiPT. A focused exploration into amino acid metabolism, lipid metabolism, and energy metabolism unveiled that the metabolic repercussions of 5-MeO-MiPT on zebrafish resulted in observable brain damage. Notably, the study identified a consequential disruption in the liver-brain pathway. The comprehensive metabolomic approach employed herein effectively discerned the impact of 5-MeO-MiPT on zebrafish metabolism. This approach also shed light on the mechanism underpinning the anxiety-like behavior observed in zebrafish post-drug injection. Specifically, our findings indicate that 5-MeO-MiPT induces brain damage, particularly within the liver-brain pathway.


Assuntos
5-Metoxitriptamina/análogos & derivados , Triptaminas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Triptaminas/toxicidade , Triptaminas/metabolismo , Metabolômica/métodos , Fígado/metabolismo
11.
Physiol Mol Biol Plants ; 30(6): 877-891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974354

RESUMO

Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01465-2.

12.
Hum Mol Genet ; 30(13): 1247-1258, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33949668

RESUMO

The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.


Assuntos
COVID-19/genética , Cromossomos Humanos Par 21 , Subunidade beta de Receptor de Interleucina-10/genética , Receptor de Interferon alfa e beta/genética , Alelos , Antivirais/farmacologia , COVID-19/imunologia , Citocinas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tratamento Farmacológico da COVID-19
13.
Hum Genet ; 142(1): 89-101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098810

RESUMO

The craniovertebral junction (CVJ) is an anatomically complex region of the axial skeleton that provides protection of the brainstem and the upper cervical spinal cord. Structural malformation of the CVJ gives rise to life-threatening neurological deficits, such as quadriplegia and dyspnea. Unfortunately, genetic studies on human subjects with CVJ malformation are limited and the pathogenesis remains largely elusive. In this study, we recruited 93 individuals with CVJ malformation and performed exome sequencing. Manual interpretation of the data identified three pathogenic variants in genes associated with Mendelian diseases, including CSNK2A1, MSX2, and DDX3X. In addition, the contribution of copy number variations (CNVs) to CVJ malformation was investigated and three pathogenic CNVs were identified in three affected individuals. To further dissect the complex mutational architecture of CVJ malformation, we performed a gene-based rare variant association analysis utilizing 4371 in-house exomes as control. Rare variants in LGI4 (carrier rate = 3.26%, p = 3.3 × 10-5) and BEST1 (carrier rate = 5.43%, p = 5.77 × 10-6) were identified to be associated with CVJ malformation. Furthermore, gene set analyses revealed that extracellular matrix- and RHO GTPase-associated biological pathways were found to be involved in the etiology of CVJ malformation. Overall, we comprehensively dissected the genetic underpinnings of CVJ malformation and identified several novel disease-associated genes and biological pathways.


Assuntos
Articulação Atlantoaxial , Variações do Número de Cópias de DNA , Humanos , Articulação Atlantoaxial/patologia , Quadriplegia , Suscetibilidade a Doenças/patologia , Bestrofinas
14.
Mol Genet Genomics ; 298(3): 777-789, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37041390

RESUMO

Sugar is crucial for grape berry, whether used for fresh food or wine. However, berry enlargement treatment with forchlorfenuron (N-(2-chloro4-pyridyl)-N'-phenylurea) (CPPU, a synthetic cytokinin) and gibberellin (GA) always had adverse effects on sugar accumulation in some grape varieties, especially CPPU. Therefore exploring the molecular mechanisms behind these adverse effects could provide a foundation for improving or developing technology to mitigate the effects of CPPU/GA treatments for grape growers. In the present study, invertase (INV) family, the key gene controlling sugar accumulation, was identified and characterized on the latest annotated grape genome. Their express pattern, as well as invertase activity and sugar content, were analyzed during grape berry development under CPPU and GA3 treatment to explore the potential role of INV members under berry enlargement treatment in grapes. Eighteen INV genes were identified and divided into two sub-families: 10 neutral INV genes (Vv-A/N-INV1-10) and 8 acid INV genes containing 5 CWINV (VvCWINV1-5) and 3 VIN (VvVIN1-3). At the early development stage, both CPPU and GA3 treatment decreased the hexose level in berries of 'Pinot Noir' grape, whereas the activity of three types inverstase (soluble acid INV, insoluble acid INV, and neutral INV) increased. Correspondingly, most of INV members were up-regulated by GA3 /CPPU application at least one sampling time point during early berry development, including VvCWINV1, 2, 3, 4, 5, VvVIN1, 2, 3 and Vv-A/N-INV1, 2, 5, 6, 7, 8, 10. At maturity, the sugar content in CPPU-treated berries is still lower than that in the control. Soluble acid INV and neutral INV, rather than insoluble acid INV, presented lower activity in CPPU-treated berries. Meanwhile, several corresponding genes, such as VvVIN2 and Vv-A/N-INV2, 8, 10 in ripening berries were obviously down-regulated by CPPU treatment. These results suggested that most of INV members could be triggered by berry enlargement treatment during early berry development, whereas VvVINs and Vv-A/N-INVs, but not VvCWINVs, could be the limiting factor resulting in decreased sugar accumulation in CPPU-treated berries at maturity. In conclusion, this study identified the INV family on the latest annotated grape genome and selected several potential members involving in the limit of CPPU on final sugar accumulation in grape berry. These results provide candidate genes for further study of the molecular regulation of CPPU and GA on sugar accumulation in grape.


Assuntos
Vitis , Humanos , beta-Frutofuranosidase/genética , Frutas , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
15.
BMC Infect Dis ; 23(1): 452, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420165

RESUMO

BACKGROUND: There has been little research on the long-term clinical outcomes of patients discharged due to undiagnosed fevers of unknown origin (FUO). The purpose of this study was to determine how fever of unknown origin (FUO) evolves over time and to determine the prognosis of patients in order to guide clinical diagnosis and treatment decisions. METHODS: Based on FUO structured diagnosis scheme, prospectively included 320 patients who hospitalized at the Department of Infectious Diseases of the Second Hospital of Hebei Medical University from March 15, 2016 to December 31,2019 with FUO, to analysis the cause of FUO, pathogenetic distribution and prognosis, and to compare the etiological distribution of FUO between different years, genders, ages, and duration of fever. RESULTS: Among the 320 patients, 279 were finally diagnosed through various types of examination or diagnostic methods, and the diagnosis rate was 87.2%. Among all the causes of FUO, 69.3% were infectious diseases, of which Urinary tract infection 12.8% and lung infection 9.7% were the most common. The majority of pathogens are bacteria. Among contagious diseases, brucellosis is the most common. Non-infectious inflammatory diseases were responsible for 6.3% of cases, of which systemic lupus erythematosus(SLE) 1.9% was the most common; 5% were neoplastic diseases; 5.3% were other diseases; and in 12.8% of cases, the cause was unclear. In 2018-2019, the proportion of infectious diseases in FUO was higher than 2016-2017 (P < 0.05). The proportion of infectious diseases was higher in men and older FUO than in women and young and middle-aged (P < 0.05). According to follow-up, the mortality rate of FUO patients during hospitalization was low at 1.9%. CONCLUSIONS: Infectious diseases are the principal cause of FUO. There are temporal differences in the etiological distribution of FUO, and the etiology of FUO is closely related to the prognosis. It is important to identify the etiology of patients with worsening or unrelieved disease.


Assuntos
Doenças Transmissíveis , Febre de Causa Desconhecida , Lúpus Eritematoso Sistêmico , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Febre de Causa Desconhecida/diagnóstico , Febre de Causa Desconhecida/epidemiologia , Febre de Causa Desconhecida/etiologia , Estudos Prospectivos , Centros de Atenção Terciária , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/complicações , Lúpus Eritematoso Sistêmico/complicações , China/epidemiologia , Estudos Retrospectivos
16.
Environ Health ; 22(1): 88, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102676

RESUMO

BACKGROUND: Para-dichlorobenzene (p-DCB) exposure associated with oxidative stress has indeed raised public concerns. However, whether p-DCB is linked with metabolic syndrome (MetS) remains unclear. We hypothesized that higher exposure to p-DCB would be linked with a higher risk of MetS in the U.S population. This study aimed to examine the associations of exposure to p-DCB with MetS prevalence. METHODS: We included 10,428 participants (5,084 men and 5,344 women), aged ≥ 20 years, from the National Health and Nutrition Examination Survey (2003-2016). The cases of MetS were diagnosed by NCEP/ATPIII. Logistic regression models were conducted to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) of MetS prevalence. Moreover, the mix associations of p-DCB metabolites were assessed using quantile sum (WQS) regression and quantile g-computation (qgcomp) methods. RESULTS: We documented 2,861 (27.1%) MetS cases. After adjustment for the potential risk factors, the ORs (95% CI) of MetS prevalence across the quartile of urinary 2,5-dichlorophenol (2,5-DCP) were 1.09 (0.93-1.28), 1.22 (1.00-1.49), and 1.34 (1.04-1.73). Moreover, 2,5 DCP is significantly associated with a higher prevalence of abdominal obesity [ORQ4vsQ1 (95% CI): 1.23 (1.03-1.48)]. The WQS and qgcomp index also showed significant associations between p-DCB metabolites and MetS. Moreover, we further examined that 2,5 DCP was correlated with higher systolic blood pressure (r = 0.022, P = 0.027), waist circumference (r = 0.099, P < 0.001), and glycohemoglobin (r = 0.027, P = 0.008) and a lower high density cholesterol (r = -0.059, P < 0.001). In addition, the significant positive associations between 2,5 DCP and MetS were robust in the subgroup and sensitivity analyses. CONCLUSION: These findings indicated that increased urinary p-DCB concentration, especially 2,5 DCP, had a higher MetS prevalence. These results should be interpreted cautiously and further research is warranted to validate our findings.


Assuntos
Síndrome Metabólica , Masculino , Humanos , Feminino , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações , Modelos Logísticos , Inquéritos Nutricionais , Fatores de Risco , Obesidade , Fenóis , Prevalência
17.
Eur Spine J ; 32(7): 2533-2540, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160441

RESUMO

PURPOSE: To report and analyze development trends in the surgical treatment of congenital scoliosis (CS) in a large CS cohort over a 10-year period. METHODS: We retrospectively searched and extracted medical records of CS inpatients receiving posterior instrumented fusion surgery at our institute from January 2010 to December 2019. We analyzed information on demographics and surgical information, including the surgical approach, number of fused segments, use of osteotomy and titanium cage implantation, length of stay, intraoperative blood loss, and rates of complications and readmission. RESULTS: 1207 CS inpatients were included. In the past decade, the proportion of patients younger than 5 years increased from 15.5 to 26.9%. The average number of fused segments decreased from 9.24 to 7.48, and the proportion of patients treated with short-segment fusion increased from 13.4 to 30.3%. The proportion of patients treated with osteotomy and titanium cage implantation increased from 55.65% and 12.03% to 76.5% and 40.22%. The average length of stay and blood loss decreased from 16.5 days and 816.1 ml to 13.5 days and 501.7 ml. The complication and readmission rates also decreased during these ten years. CONCLUSION: During this ten-year period, the surgical treatment of CS at our institute showed trends toward a younger age at fusion, lower number of fused segments, higher rate of osteotomy and titanium cage implantation, reduced blood loss, shorter length of stay and lower rate complications and readmission. These results suggest performing osteotomy combined with titanium cage implantation at an earlier age can achieve fewer fused segments and complications.


Assuntos
Escoliose , Fusão Vertebral , Humanos , Escoliose/etiologia , Resultado do Tratamento , Estudos Retrospectivos , Titânio , Próteses e Implantes , Fusão Vertebral/métodos
18.
BMC Musculoskelet Disord ; 24(1): 926, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037038

RESUMO

OBJECTIVE: There are many injectable treatments for knee osteoarthritis with different characteristics and effects, the aim is to understand which one can lead to better and safer results. METHODS: The PRISMA principles were followed when doing the literature search. Web of Science databases, Embase, the Cochrane Library, PubMed, and the Wanfang database were searched to identified randomized controlled trials that assessed the efficacy of corticosteroids (CSC), platelet-rich plasma (PRP), hyaluronic acid (HA), and combination therapy in treating KOA. Risk of bias was assessed using the relevant Cochrane tools (version 1.0). The outcome measure included the visual analog scale (VAS) score, the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score, and treatment-related adverse events. The network meta-analysis was performed using STATA17 software and a Bayesian stratified random effects model. RESULTS: Network meta-analysis using the Bayesian random-effects model revealed 35 studies with 3104 participants. PRP showed the best WOMAC score at a 3-month follow-up, followed by PRP + HA, HA, placebo, and CSC; PRP + HA scored the highest VAS, followed by PRP, CSC, HA, and placebo. PRP, CSC, HA, and placebo had the highest WOMAC scores six months following treatment; PRP + HA showed the best VAS scores. PRP showed the best WOMAC score at 12 months, followed by PRP + HA, HA, placebo, and CSC; The best VAS score was obtained with PRP, followed by PRP + HA, HA, and CSC. No therapy demonstrated a rise in adverse events linked to the treatment in terms of safety. CONCLUSIONS: The current study found that PRP and PRP + HA were the most successful in improving function and alleviating pain after 3, 6, and 12 months of follow-up. CSC, HA, PRP, and combination therapy did not result in an increase in the incidence of treatment-related side events as compared to placebo.


Assuntos
Osteoartrite do Joelho , Plasma Rico em Plaquetas , Humanos , Ácido Hialurônico/efeitos adversos , Osteoartrite do Joelho/tratamento farmacológico , Metanálise em Rede , Teorema de Bayes , Resultado do Tratamento , Injeções Intra-Articulares , Corticosteroides/efeitos adversos
19.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108057

RESUMO

Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression levels changed during longissimus dorsi muscle development in goats. The effects of HuR on goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1 (MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Humanos , Células Satélites de Músculo Esquelético/metabolismo , Cabras/genética , Diferenciação Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , RNA Interferente Pequeno/metabolismo , Desenvolvimento Muscular/genética
20.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762418

RESUMO

The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA