Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166615

RESUMO

BACKGROUND: Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS: We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS: In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.


Assuntos
Variações do Número de Cópias de DNA , Patos , Animais , Patos/genética , Genoma , Análise de Sequência de DNA , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587649

RESUMO

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Assuntos
Berberina , Berberina/análogos & derivados , Animais , Berberina/farmacologia , Urease , Amônia , Cloretos , Rúmen , Inibidores Enzimáticos/farmacologia , Nitrogênio , Ruminantes
3.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892031

RESUMO

Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento Completo do Genoma , Animais , Variações do Número de Cópias de DNA/genética , Suínos/genética , Sequenciamento Completo do Genoma/métodos , China , Cruzamento , Variação Genética , Genoma , Evolução Molecular
4.
Opt Lett ; 48(15): 3941-3944, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527088

RESUMO

An optofluidic sensor based on a Bragg grating in hollow-core fiber (HCF) is experimentally demonstrated. The grating is inscribed into the HCF by femtosecond laser illumination through a phase mask. Periodic index modulation is introduced into the silica material surrounding the hollow core, causing cladding mode resonance, and multiple reflection peaks are observed in the grating spectrum. These reflection peaks later shift to longer wavelengths when high-index liquid is infiltrated into the HCF. The new reflection peak results from the backward coupling of the liquid core mode of the waveguide, the mode field of which overlaps with the grating modulation surrounding the liquid core. The resonant wavelength of the liquid-core fiber grating increases with the index value of the infiltrating liquid, and optofluidic refractive index sensing is realized with the device. The highest refractive index sensitivity, 1117 nm/RIU, is obtained experimentally in the index range of 1.476-1.54. The infiltrated hollow-core fiber Bragg grating also exhibits high temperature sensitivity due to the high thermal-optic coefficient of the liquid, and a sensitivity of -301 pm/°C is achieved in the temperature range of 25°C to 60°C.

5.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567778

RESUMO

AIM: The meat of Tibetan sheep has a unique flavor, delicious taste, and superior nutritional value. However, the change of grass will lead to a change in meat quality. This study aimed to explore the potential regulatory mechanisms of microbial metabolites with respect to meat quality traits of Tibetan sheep under nutrient stress in the cold season. METHODS AND RESULTS: We determined and analyzed the longissimus dorsi quality, fatty acid composition, expression of genes, and rumen microbial metabolites of Tibetan sheep in cold and warm seasons. The shear force was decreased (P < .05), the meat color a*24 h value was increased (P < .05), and the contents of crude fat (EE) and protein (CP) were decreased in the cold season. Polyunsaturated fatty acids (PUFAs)-linoleic acid and docosahexaenoic acid increased significantly in the cold season (P < .05). The expressions of meat quality genes MC4R, CAPN1, H-FABP, and LPL were significantly higher in the warm season (P < .05), and the CAST gene was significantly expressed in the cold season (P < .01). The different microbial metabolites of Tibetan sheep in the cold and warm seasons were mainly involved in amino acid metabolism, lipid metabolism, and digestive system pathway, and there was some correlation between microbiota and meat quality traits. There are similarities between microbial metabolites enriched in the lipid metabolism pathway and muscle metabolites. CONCLUSION: Under nutritional stress in the cold season, the muscle tenderness of Tibetan sheep was improved, and the fat deposition capacity was weakened, but the levels of beneficial fatty acids were higher than those in the warm season, which was more conducive to healthy eating.


Assuntos
Ácidos Graxos , Rúmen , Ovinos , Animais , Rúmen/metabolismo , Estações do Ano , Tibet , Ácidos Graxos/análise , Carne/análise , Nutrientes
6.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834304

RESUMO

Plateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.


Assuntos
Microbiota , Rúmen , Animais , Ovinos , Rúmen/química , Tibet , Metaboloma , Aminoácidos/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055002

RESUMO

Regulation of microbial urease activity plays a crucial role in improving the utilization efficiency of urea and reducing nitrogen emissions to the environment for ruminant animals. Dealing with the diversity of microbial urease and identifying highly active urease as the target is the key for future regulation. However, the identification of active urease in the rumen is currently limited due to large numbers of uncultured microorganisms. In the present study, we describe an activity- and enrichment-based metaproteomic analysis as an approach for the discovery of highly active urease from the rumen microbiota of cattle. We conducted an optimization method of protein extraction and purification to obtain higher urease activity protein. Cryomilling was the best choice among the six applied protein extraction methods (ultrasonication, bead beating, cryomilling, high-pressure press, freeze-thawing, and protein extraction kit) for obtaining protein with high urease activity. The extracted protein by cryomilling was further enriched through gel filtration chromatography to obtain the fraction with the highest urease activity. Then, by using SDS-PAGE, the gel band including urease was excised and analyzed using LC-MS/MS, searching against a metagenome-derived protein database. Finally, we identified six microbial active ureases from 2225 rumen proteins, and the identified ureases were homologous to those of Fibrobacter and Treponema. Moreover, by comparing the 3D protein structures of the identified ureases and known ureases, we found that the residues in the ß-turn of flap regions were nonconserved, which might be crucial in influencing the flexibility of flap regions and urease activity. In conclusion, the active urease from rumen microbes was identified by the approach of activity- and enrichment-based metaproteomics, which provides the target for designing a novel efficient urease inhibitor to regulate rumen microbial urease activity.


Assuntos
Metagenômica , Microbiota , Proteômica , Rúmen/microbiologia , Urease/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Ativação Enzimática , Metagenômica/métodos , Modelos Moleculares , Conformação Proteica , Proteômica/métodos , Relação Estrutura-Atividade , Urease/química
8.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555715

RESUMO

The rumen is an important hallmark organ of ruminants and plays an important role in the metabolism and immune barrier of Tibetan sheep on the Plateau. However, there are few studies on rumen development and metabolism regulation in Tibetan sheep at different ages. Here, we comprehensively analyzed the immune function, fermentation function, rumen epithelial micromorphology and transcriptome profile of Tibetan sheep at different ages. The results showed that the concentration of IgG decreased and the concentration of IgM increased with age (p < 0.05), and the highest concentration of IgA was observed at 1.5 and 3.5 years of age. In terms of rumen fermentation characteristics, VFAs of 4-month-old lambs were the highest, followed by VFAs and NH3-N of Tibetan sheep at 3.5 years of age. Hematoxylin-eosin staining and transmission electron microscopy section examination of rumen epithelial tissue showed that the rumen papilla width increased with age (p < 0.001), the thickness of the stratum corneum decreased, the cells in the stratum corneum showed accelerated migration and the thickness of the rumen muscle layer increased (p < 0.001). Desmosomal junctions between the layers of rumen epithelium increased at 1.5 and 3.5 years old, forming a compact barrier structure, and the basal layer had more mitochondria involved in the regulation of energy metabolism. RNA-seq analysis revealed that a total of 1006 differentially expressed genes (DEGs) were identified at four ages. The DEGs of Tibetan sheep aged 4 months and 6 years were mainly enriched in the oxidation−reduction process and ISG15-protein conjugation pathway. The 1.5 and 3.5-year-olds were mainly enriched in skeletal muscle thin filament assembly, mesenchyme migration and the tight junction pathway. WGCNA showed that DEGs related to rumen microbiota metabolite VFAs and epithelial morphology were enriched in "Metabolism of xenobiotics by cytochrome P450, PPAR signaling pathway, Butanoate metabolism pathways" and participated in the regulation of rumen epithelial immune and fermentation metabolism functions of Tibetan sheep at different ages. This study systematically revealed the regulatory mechanism of rumen epithelial development and metabolism in the plateau adaptation of Tibetan sheep, providing a new approach for the study of plateau adaptation.


Assuntos
Microbiota , Rúmen , Ovinos/genética , Animais , Rúmen/química , Tibet , Ruminantes , Fermentação
9.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293284

RESUMO

Altitude is the main external environmental pressure affecting the production performance of Tibetan sheep, and the adaptive evolution of many years has formed a certain response mechanism. However, there are few reports on the response of ruminal microbiota and host genomes of Tibetan sheep to high-altitude environments. Here, we conducted an integrated analysis of volatile fatty acids (VFAs), microbial diversity (16S rRNA), epithelial morphology, and epithelial transcriptome in the rumen of Tibetan sheep at different altitudes to understand the changes in ruminal microbiota−host interaction in response to high altitude. The differences in the nutritional quality of forage at different altitudes, especially the differences in fiber content (ADF/NDF), led to changes in rumen VFAs of Tibetan sheep, in which the A/P value (acetic acid/propionic acid) was significantly decreased (p < 0.05). In addition, the concentrations of IgA and IgG in Middle-altitude (MA) and High-altitude Tibetan sheep (HA) were significantly increased (p < 0.05), while the concentrations of IgM were significantly increased in MA (p < 0.05). Morphological results showed that the width of the rumen papilla and the thickness of the basal layer increased significantly in HA Tibetan sheep (p < 0.05). The 16S rRNA analysis found that the rumen microbial diversity of Tibetan sheep gradually decreased with increasing altitude, and there were some differences in phylum- and genus-level microbes at the three altitudes. RDA analysis found that the abundance of the Rikenellaceae RC9 gut group and the Ruminococcaceae NK4A214 group increased with altitudes. Furthermore, a functional analysis of the KEGG microbial database found the "lipid metabolism" function of HA Tibetan sheep to be significantly enriched. WGCNA revealed that five gene modules were enriched in "energy production and conversion", "lipid transport and metabolism", and "defense mechanisms", and cooperated with microbiota to regulate rumen fermentation and epithelial immune barrier function, so as to improve the metabolism and immune level of Tibetan sheep at high altitude.


Assuntos
Microbiota , Rúmen , Ovinos , Animais , Rúmen/química , Propionatos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Altitude , Interações entre Hospedeiro e Microrganismos , Tibet , Ácidos Graxos Voláteis/metabolismo , Acetatos/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo
10.
J Sci Food Agric ; 102(7): 2676-2685, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34689341

RESUMO

BACKGROUND: Milk microRNA (miRNA) with bioactivity is beneficial for human health. However, the effect of heat treatment on miRNA in milk is still not clear. In this study, the miRNAs in raw (RM), pasteurized (PM) and ultra-high-temperature (UHT) milk (UM) from the same batch were extracted, sequenced and analyzed. RESULTS: The results showed that there was a significant difference in miRNAs between RM and UM, but not between RM and PM. The total read counts of milk miRNAs were significantly decreased by heat treatment, with the least counts in UM (P < 0.05). The average length and GC percentage of miRNAs were significantly reduced by heat treatment (P < 0.05), while there was no significant difference in these terms between RM and PM. The content of miRNAs was verified by qPCR, finding that miR-17-5p, miR-25, miR-27b and miR-9-5p were significantly reduced in UM (P < 0.05) but not significantly affected in PM (except miR-27b). In addition, the targeting gene ontology enrichment functions of the different presented miRNAs were mostly enriched in biological process, cellular component and molecular function. The top 20 enriched miRNAs with different levels in heat-treated milk were identified by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Interestingly, most of the functions of these miRNA targeting genes are involved in cancer or inflammation activity. CONCLUSION: This study revealed that the bioactive miRNA in RM was lost after UHT treatment but not in pasteurized treatment. © 2021 Society of Chemical Industry.


Assuntos
MicroRNAs , Pasteurização , Alérgenos/análise , Animais , Bovinos , Feminino , Ontologia Genética , MicroRNAs/genética , Leite/química , Pasteurização/métodos , Temperatura
11.
BMC Genomics ; 22(1): 744, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654374

RESUMO

BACKGROUND: Yaks that inhabit the Tibetan Plateau exhibit striking phenotypic and physiological differences from cattle and have adapted well to the extreme conditions on the plateau. However, the mechanisms used by these animals for the regulation of gene expression at high altitude are not fully understood. RESULTS: Here, we sequenced nine lung transcriptomes of yaks at altitudes of 3400, 4200 and 5000 m, and low-altitude Zaosheng cattle, which is a closely related species, served as controls. The analysis identified 21,764 mRNAs, 1377 circRNAs and 1209 miRNAs. By comparing yaks and cattle, 4975 mRNAs, 252 circRNAs and 75 miRNAs were identified differentially expressed. By comparing yaks at different altitudes, we identified 756 mRNAs, 64 circRNAs and 83 miRNAs that were differentially expressed (fold change ≥2 and P-value < 0.05). The pathways enriched in the mRNAs, circRNAs and miRNAs identified from the comparison of yaks and cattle were mainly associated with metabolism, including 'glycosaminoglycan degradation', 'pentose and glucuronate interconversions' and 'flavone and flavonol biosynthesis', and the mRNAs, circRNAs and miRNAs identified from the comparison of yaks at different altitude gradients were significantly enriched in metabolic pathways and immune and genetic information processing pathways. The core RNAs were identified from the mRNA-miRNA-circRNA networks constructed using the predominant differentially expressed RNAs. The core genes specific to the difference between yaks and cattle were associated with the endoplasmic reticulum and fat deposition, but those identified from the comparison among yaks at different altitude gradients were associated with maintenance of the normal biological functions of cells. CONCLUSIONS: This study enhances our understanding of the molecular mechanisms involved in hypoxic adaptation in yaks and might contribute to improvements in the understanding and prevention of hypoxia-related diseases.


Assuntos
Altitude , Bovinos/genética , MicroRNAs , RNA Circular , RNA Mensageiro , Animais , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Transcriptoma
12.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360977

RESUMO

Inhibition of ruminal microbial urease is of particular interest due to its crucial role in regulating urea-N utilization efficiency and nitrogen pollution in the livestock industry. Acetohydroxamic acid (AHA) is currently the only commercially available urease inhibitor, but it has adverse side effects. The urease accessory protein UreG, which facilitates the functional incorporation of the urease nickel metallocentre, has been proposed in developing urease inhibitor through disrupting urease maturation. The objective of this study was to screen natural compounds as potential urease inhibitors by targeting UreG in a predominant ruminal microbial urease. In silico screening and in vitro tests for potential inhibitors were performed using molecular docking and an assay for the GTPase activity of UreG. Chelerythrine chloride was selected as a potential urease inhibitor of UreG with an inhibition concentration IC50 value of 18.13 µM. It exhibited mixed inhibition, with the Ki value being 26.28 µM. We further explored its inhibition mechanism using isothermal titration calorimetry (ITC) and circular dichroism (CD) spectroscopy, and we found that chelerythrine chloride inhibited the binding of nickel to UreG and induced changes in the secondary structure, especially the α-helix and ß-sheet of UreG. Chelerythrine chloride formed a pi-anion interaction with the Asp41 residue of UreG, which is an important residue in initiating the conformational changes of UreG. In conclusion, chelerythrine chloride exhibited a potential inhibitory effect on urease, which provided new evidence for strategies to develop novel urease inhibitors targeting UreG to reduce nitrogen excretion from ruminants.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Benzofenantridinas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Rúmen/microbiologia , Amônia/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzofenantridinas/química , Sítios de Ligação , Bovinos , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Ligação Proteica
13.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825454

RESUMO

Inhibition of the urease activity of ruminal microbiota is not only beneficial for increasing dietary and endogenic urea-N utilization efficiency in ruminants but also might be applicable for the preservation of nitrogen fertilizer in soil and treatment of gastrointestinal and urinary tract infections caused by ureolytic bacteria. To discover urease inhibitors to efficiently target ruminal microbiota, the identified ruminal microbial metagenomic urease gene was used to construct a homology model to virtually screen urease inhibitors from the ChemDiv database by molecular docking. The GMQE and QMEAN values of the homology model were 0.85 and -0.37, respectively, indicating a good model quality. The inhibition effect of the screened urease inhibitor for ruminal urea degradation was assessed by ruminal microbial fermentation in vitro. The toxic effect of the candidate inhibitor was performed using gut Caco-2 cells in vitro. The results showed that compound 3-[1-[(aminocarbonyl)amino]-5-(4-methoxyphenyl)-1H-pyrrol-2-yl] propanoic acid (ChemDiv_ID: 6238-0047, IC50 = 65.86 µM) was found to be the most effective urease inhibitor among the candidate compounds. Compound 6238-0047 significantly lowered the amount of urea degradation and ammonia production in ruminal microbial fermentation. The 24 h degradation rate of compound 6238-0047 in ruminal microbial fermentation was 3.32%-16.00%. In addition, compound 6238-0047 (10-100 µM) had no significant adverse effect on the cell viability of Caco-2 cells. Molecular docking showed that compound 6238-0047 could interact with Asp359 in the active site and Cys318 in the flap region by the hydrogen bond and Pi-Alkyl interaction, respectively. Compound 6238-0047 could be used as a novel inhibitor for decreasing the urease activity of ruminal microbiota.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Rúmen/microbiologia , Urease/antagonistas & inibidores , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células CACO-2 , Bovinos , Bases de Dados de Compostos Químicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenoma/genética , Simulação de Acoplamento Molecular , Conformação Proteica , Urease/química , Urease/metabolismo
14.
Asian-Australas J Anim Sci ; 33(10): 1566-1572, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32054196

RESUMO

OBJECTIVE: The extensive breeding of commercial chickens has led to a sharp decrease in the resources of many indigenous chickens, especially the indigenous chickens in the southeastern coastal region, which are on the verge of extinction, and the indigenous chickens in the northwestern region of China, which are also at risk. However, there are few reports on the evaluation of genetic diversity and conservation of genetic resources of indigenous chickens in remote areas in the Northwest of China. METHODS: In the present study, the genetic diversity and phylogenetic relationship of six indigenous chickens from different regions were studied based on variation in mitochondrial DNA control region (D-loop), and the degree of introgression from commercial breeds into these chickens was determined by the amount of haplotype sharing between indigenous and commercial breeds. RESULTS: Twenty-five polymorphic sites and 25 haplotypes were detected in 206 individuals. Principal component analysis showed that the Jingning chicken had the highest genetic diversity among the six indigenous chickens. According to the degree of introgression, the six indigenous breeds may be involved in haplotype sharing with commercial breeds, and the introgression from commercial chickens into the Haidong chicken is the most serious. CONCLUSION: The genetic uniqueness of indigenous chickens has been eroded, so it is necessary to consider the protection of their genetic resources. Phylogenetic analysis suggests that the six indigenous chickens have two major matrilineal origins: one from Yunnan or its surrounding areas in China and the other from the Indian subcontinent.

15.
Asian-Australas J Anim Sci ; 33(12): 1905-1911, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32054162

RESUMO

OBJECTIVE: Tibetan pigs, an excellent species unique to China, face serious threats, which in turn affects the development and utilization of the outstanding advantages of plateau hypoxia adaptability and reduces their genetic diversity. Therefore, a discussion of measures to conserve this genetic resource is necessary. The method, based on genetic diversity, genetic divergence and total genetic contribution rate of population, reflects the priority conservation order and varies depending on the three different purposes of conservation. METHODS: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces and downloaded 564 mtDNA D-loop sequences from three indigenous pig breeds in Qinghai, Sichuan, and Yunnan Provinces distributed near the Tibetan pigs. RESULTS: We analyzed three different aspects: Changdu Tibetan pigs have the highest genetic diversity, and from the perspective of genetic diversity, the priority conservation is Changdu Tibetan pigs. Hezuo Tibetan pigs have the highest genetic contribution, so the priority conservation is Hezuo Tibetan pigs in the genetic contribution aspect. Rkaze Tibetan pigs were severely affected by indigenous pig breeds, so if considering from the perspective of introgression, the priority conservation is Rkaze Tibetan pigs. CONCLUSION: This study evaluated genetic diversity and comprehensively assessed conservation priority from three different aspects in nine Tibetan pig populations.

16.
Asian-Australas J Anim Sci ; 33(4): 531-538, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31480190

RESUMO

OBJECTIVE: Evidence from previous reports indicates that pig domestication in East Asia mainly occurred in the Mekong region and the middle and downstream regions of the Yangtze River. Further research identified two new origin centers for domestic pigs in the Tibetan Plateau and the islands of Southeast Asia. However, due to the small sample size of Tibetan pigs, details of the origin and spread of Tibetan pigs has not yet been established. METHODS: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces. Comprehensive Tibetan pig samples were taken to perform the most detailed analysis of Tibetan pigs to date. RESULTS: The result indicate that Rkaze pigs had the lowest level of diversity, while Changdu pigs had the highest diversity. Interestingly, these two populations were both in the Tibetan Plateau area. If we calculate diversity in terms of each province, the Tibetan Plateau area had the lowest diversity, while the Chinese province of Gansu had the highest diversity. Diversity gradient analysis of major haplotypes suggested three domestication centers of Tibetan pigs in the Tibetan Plateau and the Chinese provinces of Gansu and Yunnan. CONCLUSION: We found two new domestication centers for Tibetan pigs. One is in the Chinese province of Gansu, which lies in the upstream region of the Yellow River, and the other is in the Chinese province of Yunnan.

17.
J Proteome Res ; 17(9): 3128-3142, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30079738

RESUMO

Aflatoxin M1 (AFM1) is a common mycotoxin in dairy milk, and it is typically concurrently present with other mycotoxins that may represent a threat to food safety. However, knowledge of how AFM1, alone or in combination with other mycotoxins, may affect human intestinal epithelial integrity remain to be established. We employed transcriptome and proteome analysis integrated with biological validation to reveal the molecular basis underlining the effect of exposure to AFM1, ochratoxin A (OTA), or both on the intestinal epithelial integrity of differentiated Caco-2 cells. Exposure to 4 µg/mL of OTA was found to disrupt human gut epithelial integrity, whereas 4 µg/mL of AFM1 did not. The integrated transcriptome and proteome analysis of AFM1 and OTA, alone or in combination, indicate the synergistic effect of the two mycotoxins in disrupting intestinal integrity. This effect was mechanistically linked to a broad range of pathways related to intestinal integrity enriched by down-regulated genes and proteins, associated with focal adhesion, adheren junction, and gap junction pathways. Furthermore, the cross-omics analysis of mixed AFM1 and OTA compared to OTA alone suggest that kinase family members, including myosin light-chain kinase, mitogen-activated protein kinases, and protein kinase C, are the potential key regulators in modulating intestinal epithelial integrity. These findings provide novel insight into the synergistic detrimental role of multiple mycotoxins in disrupting intestinal integrity and, therefore, identify potential targets to improve milk safety related to human health.


Assuntos
Aflatoxina M1/toxicidade , Adesões Focais/efeitos dos fármacos , Ocratoxinas/toxicidade , Proteoma/genética , Transcriptoma , Junções Aderentes/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Junções Comunicantes/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Mapas de Interação de Proteínas , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteoma/classificação , Proteoma/metabolismo
18.
J Dairy Sci ; 101(4): 2897-2905, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29398021

RESUMO

Commercial milk products worldwide come not only from cows, but also from goats, buffaloes, camels, and yaks. Milk from non-bovine animals is important culturally and economically. Pseudomonas spp. are frequently linked to milk spoilage under storage temperatures. The objectives of this study were to identify Pseudomonas spp. isolated from goat, buffalo, camel, and yak milks, and to measure proteolytic activity of Pseudomonas spp. under different storage temperatures. Raw milk samples of goat (n = 50), buffalo (n = 25), camel (n = 25), and yak (n = 25) were collected from 5 provinces in China. Pseudomonas spp. were analyzed by Pseudomonas-specific 16S, universal 16S rRNA, and rpoB gene sequence analyses. Proteolytic activity on milk agar, quantification via the trinitrobenzenesulfonic acid assay at 2°C, 4°C, 7°C, 10°C and 25°C, as well as alkaline peptidase gene (aprX) identification were performed to ascertain the proteolytic activity of these isolates. Pseudomonas spp. were found in 46 samples out of total 125 samples. A total of 67 Pseudomonas spp. were identified. Of Pseudomonas isolates, we obtained extracellular peptidase activity in 7 (10.4%) at 2°C, 17 (25.4%) at 4°C, 24 (35.8%) at 7°C, 39 (58.2%) at 10°C, and 41 (61.2%) at 25°C. The results revealed that a wide diversity of Pseudomonas spp. were present in different non-bovine raw milks, with the ability to produce peptidases at storage temperatures. However, proteolytic activity varied widely among the peptidase-positive isolates. A majority of isolates from yak milk had high proteolytic activity.


Assuntos
Microbiologia de Alimentos , Leite/microbiologia , Pseudomonas/fisiologia , Animais , Búfalos/microbiologia , Camelus/microbiologia , Bovinos , China , Cabras/microbiologia , Proteólise , Pseudomonas/classificação , Pseudomonas/isolamento & purificação
19.
Int J Biometeorol ; 62(2): 177-182, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28887600

RESUMO

This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.


Assuntos
Doenças dos Bovinos/prevenção & controle , Temperatura Baixa , Transtornos de Estresse por Calor/prevenção & controle , Transtornos de Estresse por Calor/veterinária , Proteínas de Fase Aguda , Animais , Proteínas de Transporte/sangue , Bovinos/sangue , Doenças dos Bovinos/sangue , Feminino , Haptoglobinas/análise , Transtornos de Estresse por Calor/sangue , Hemoglobinas/análise , Inflamação/sangue , Inflamação/prevenção & controle , Inflamação/veterinária , Glicoproteínas de Membrana/sangue , Proteômica
20.
Proteomics ; 17(9)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28266172

RESUMO

Glycosylated proteins in milk have been implicated in multiple biological roles. However, the N-glycoprotein components and their complexity in milk whey from dairy animals are not well characterized. Here, a modified proteomics approach consisting of N-glycopeptide enrichment and identification was used to map the N-glycoproteome profile of milk whey from Holstein and Jersey cows, buffaloes, yaks, goats, camels, and horses. A total of 233 N-glycosylation sites, corresponding to 147 N-glycoproteins, were detected in the studied animals. Most of the identified N-glycosylation sites were not characterized in the database and were considered as unknown. Functional analysis of the identified glycoproteins demonstrated that response to stimulus was the most abundant GO category shared in the studied animals according to their annotation. Lysosome, glycosaminoglycan degradation, and extracellular matrix-receptor interaction pathways were shared between Holstein and Jersey cows, and yaks. N-glycoprotein components of milk whey from Holstein and Jersey cows, buffaloes, yaks, and goats were more similar to each other than to those of camels and horses. These results significantly extend the number of known N-glycosylation sites and reveal in-depth composition and potential functions of N-glycoproteins in milk whey, which in turn provides insights to further explore N-glycoprotein biosynthesis in the studied animals.


Assuntos
Glicoproteínas/metabolismo , Proteínas do Leite/metabolismo , Leite/química , Proteômica/métodos , Proteínas do Soro do Leite/metabolismo , Animais , Búfalos , Camelus , Bovinos , Feminino , Glicosilação , Cabras , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA