RESUMO
Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.
Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres SexuaisRESUMO
The nature of the anti-tumor immune response changes as primary tumors progress and metastasize. We investigated the role of resident memory (Trm) and circulating memory (Tcirm) cells in anti-tumor responses at metastatic locations using a mouse model of melanoma-associated vitiligo. We found that the transcriptional characteristics of tumor-specific CD8+ T cells were defined by the tissue of occupancy. Parabiosis revealed that tumor-specific Trm and Tcirm compartments persisted throughout visceral organs, but Trm cells dominated lymph nodes (LNs). Single-cell RNA-sequencing profiles of Trm cells in LN and skin were distinct, and T cell clonotypes that occupied both tissues were overwhelmingly maintained as Trm in LNs. Whereas Tcirm cells prevented melanoma growth in the lungs, Trm afforded long-lived protection against melanoma seeding in LNs. Expanded Trm populations were also present in melanoma-involved LNs from patients, and their transcriptional signature predicted better survival. Thus, tumor-specific Trm cells persist in LNs, restricting metastatic cancer.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Linfonodos/imunologia , Melanoma Experimental/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Humanos , Camundongos , Vitiligo , Melanoma Maligno CutâneoRESUMO
This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.
Assuntos
Poli(ADP-Ribose) Polimerases , Neoplasias do Colo do Útero , Feminino , Humanos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Glicosiltransferases/genética , Prognóstico , MutaçãoRESUMO
BACKGROUND: Estriol (E3) is a steroid hormone formed only during pregnancy in primates including humans. Although E3 is synthesized at large amounts through a complex pathway involving the fetus and placenta, it is not required for the maintenance of pregnancy and has classically been considered virtually inactive due to associated very weak canonical estrogen signaling. However, estrogen exposure during pregnancy may have an effect on organs both within and outside the reproductive system, and compounds with binding affinity for estrogen receptors weaker than E3 have been found to impact reproductive organs and the brain. Here, we explore potential effects of E3 on fetal development using mouse as a model system. RESULTS: We administered E3 to pregnant mice, exposing the fetus to E3. Adult females exposed to E3 in utero (E3-mice) had increased fertility and superior pregnancy outcomes. Female and male E3-mice showed decreased anxiety and increased exploratory behavior. The expression levels and DNA methylation patterns of multiple genes in the uteri and brains of E3-mice were distinct from controls. E3 promoted complexing of estrogen receptors with several DNA/histone modifiers and their binding to target genes. E3 functions by driving epigenetic change, mediated through epigenetic modifier interactions with estrogen receptors rather than through canonical nuclear transcriptional activation. CONCLUSIONS: We identify an unexpected functional role for E3 in fetal reproductive system and brain. We further identify a novel mechanism of estrogen action, through recruitment of epigenetic modifiers to estrogen receptors and their target genes, which is not correlated with the traditional view of estrogen potency.
Assuntos
Estrogênios , Receptores de Estrogênio , Animais , Encéfalo/metabolismo , Epigênese Genética , Estriol , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Feto/metabolismo , Masculino , Camundongos , Gravidez , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , EsteroidesRESUMO
Chromatin accessibility is essential for transcriptional activation of genomic regions. It is well established that transcription factors (TFs) and histone modifications (HMs) play critical roles in chromatin accessibility regulation. However, there is a lack of studies that quantify these relationships. Here we constructed a two-layer model to predict chromatin accessibility by integrating DNA sequence, TF binding, and HM signals. By applying the model to two human cell lines (GM12878 and HepG2), we found that DNA sequences had limited power for accessibility prediction, while both TF binding and HM signals predicted chromatin accessibility with high accuracy. According to the HM model, HM features determined chromatin accessibility in a cell line shared manner, with the prediction power attributing to five core HM types. Results from the TF model indicated that chromatin accessibility was determined by a subset of informative TFs including both cell line-specific and generic TFs. The combined model of both TF and HM signals did not further improve the prediction accuracy, indicating that they provide redundant information in terms of chromatin accessibility prediction. The TFs and HM models can also distinguish the chromatin accessibility of proximal versus distal transcription start sites with high accuracy.
Assuntos
Cromatina , Epigenômica , Sítios de Ligação , Cromatina/genética , Imunoprecipitação da Cromatina , Simulação por Computador , Humanos , Ligação ProteicaRESUMO
Developing prognostic biomarkers for specific cancer types that accurately predict patient survival is increasingly important in clinical research and practice. Despite the enormous potential of prognostic signatures, proposed models have found limited implementations in routine clinical practice. Herein, we propose a generic, RNA sequencing platform independent, statistical framework named whole transcriptome signature for prognostic prediction to generate prognostic gene signatures. Using ovarian cancer and lung adenocarcinoma as examples, we provide evidence that our prognostic signatures overperform previous reported signatures, capture prognostic features not explained by clinical variables, and expose biologically relevant prognostic pathways, including those involved in the immune system and cell cycle. Our approach demonstrates a robust method for developing prognostic gene expression signatures. In conclusion, our statistical framework can be generally applied to all cancer types for prognostic prediction and might be extended to other human diseases. The proposed method is implemented as an R package (PanCancerSig) and is freely available on GitHub ( https://github.com/Cheng-Lab-GitHub/PanCancer_Signature ).
Assuntos
Sequenciamento do Exoma , Perfilação da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/mortalidade , Bases de Dados de Ácidos Nucleicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias/mortalidade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Prognóstico , Análise de Sequência de RNA , Software , TranscriptomaRESUMO
EGFR is an oncogene with a high frequency of activating mutations in nonsmall cell lung cancer (NSCLC). EGFR inhibitors have been FDA-approved for NSCLC and have shown efficacy in patients with certain EGFR mutations. However, only 9% to 26% of these patients achieve objective responses. In our study, we developed an EGFR gene signature based on The Cancer Genome Atlas (TCGA) RNA-seq data of lung adenocarcinoma (LUAD) to direct the preselection of patients for more effective EGFR-targeted therapy. This signature infers baseline EGFR signaling pathway activity (denoted as EGFR score) in tumor samples, which is associated with tumor sensitivity to EGFR inhibitors and other tyrosine kinase inhibitors (TKIs). EGFR score predicted sensitivity of lung cancer cell lines to Erlotinib, Gefitinib and Sorafenib. Importantly, EGFR score calculated from pretreated samples was associated with patient response to Gefitinib and Sorafenib in lung cancer. Additionally, integration of the EGFR signature with TCGA LUAD data showed that it accurately predicted functional effects of different somatic EGFR mutations, and identified other mutations affecting EGFR pathway activity. Finally, using cancer cell line and clinical trial data, the EGFR score was associated with patient response to TKIs in liver cancer and other cancer types. The EGFR signature provides a useful biomarker that can expand the application of EGFR inhibitors or other TKIs and improve their treatment efficacy through patient stratification.
Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/terapia , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Conjuntos de Dados como Assunto , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Modelos Logísticos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Modelos Genéticos , Terapia de Alvo Molecular/métodos , Mutação , Valor Preditivo dos Testes , Prognóstico , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/uso terapêutico , RNA-Seq , Transdução de Sinais/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Transcriptoma/genéticaRESUMO
In eukaryotes, DNA replication initiates from multiple origins of replication for timely genome duplication. These sites are selected by origin licensing, during which the core enzyme of the eukaryotic DNA replicative helicase, the Mcm2-7 (minichromosome maintenance) complex, is loaded at each origin. This origin licensing requires loading two Mcm2-7 helicases around origin DNA in a head-to-head orientation. Current models suggest that the origin-recognition complex (ORC) and cell-division cycle 6 (Cdc6) proteins recognize and encircle origin DNA and assemble an Mcm2-7 double-hexamer around adjacent double-stranded DNA. To test this model and assess the location of Mcm2-7 initial loading, we placed DNA-protein roadblocks at defined positions adjacent to the essential ORC-binding site within Saccharomyces cerevisiae origin DNA. Roadblocks were made either by covalent cross-linking of the HpaII methyltransferase to DNA or through binding of a transcription activator-like effector (TALE) protein. Contrary to the sites of Mcm2-7 recruitment being precisely defined, only single roadblocks that inhibited ORC-DNA binding showed helicase loading defects. We observed inhibition of helicase loading without inhibition of ORC-DNA binding only when roadblocks were placed on both sides of the origin to restrict sliding of a helicase-loading intermediate. Consistent with a sliding helicase-loading intermediate, when either one of the flanking roadblocks was eliminated, the remaining roadblock had no effect on helicase loading. Interestingly, either origin-flanking nucleosomes or roadblocks resulted in helicase loading being dependent on an additional origin sequence known to be a weaker ORC-DNA-binding site. Together, our findings support a model in which sliding helicase-loading intermediates increase the flexibility of the DNA sequence requirements for origin licensing.
Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Replicação do DNA/genética , Replicação do DNA/fisiologia , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/fisiologia , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Domínios Proteicos , Origem de Replicação/genética , Origem de Replicação/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.
Assuntos
Cromatina , Regulação Neoplásica da Expressão Gênica , Neoplasias , Análise de Célula Única , Humanos , Cromatina/metabolismo , Cromatina/genética , Neoplasias/genética , Redes Neurais de Computação , Mutação , Variações do Número de Cópias de DNA , Neoplasias da Mama/genética , Neoplasias da Mama/patologiaRESUMO
RNA-binding proteins (RBPs) have critical roles in N6-methyladenosine (m6A) modification process. We designed a Random Forest (RF) model to systematically analyze the interaction among RBPs and m6A modifications by integrating the binding signals from hundreds of RBPs. Accurate prediction of m6A sites demonstrated significant connections between RBP bindings and m6A modifications. The relative importance of different RBPs from the model provided a quantitative metric to evaluate their interactions with m6A modifications. Redundancy analysis showed that several RBPs may have similar binding patterns with m6A sites. The RF model exhibited fairly high prediction accuracy across cell lines, suggesting a conservative RBP interaction network regulates m6A occupancy. Specific RBPs can engage to the corresponding regional m6A sites and deploy distinct regulatory processes, such as cleavage site selection of the alternative polyadenylation (APA). We also integrated histone modifications into our RF model, which demonstrated H3K36me3 and H3K27me3 as determining features for m6A distribution.
RESUMO
The mechanism controlling the dynamic targeting of SWI/SNF has long been postulated to be coordinated by transcription factors (TFs), yet demonstrating a specific TF influence has proven difficult. Here we take a multi-omics approach to interrogate transient SWI/SNF interactors, chromatin targeting and the resulting three-dimensional epigenetic landscape. We utilize the labeling technique TurboID to map the SWI/SNF interactome and identify the activator protein-1 (AP-1) family members as critical interacting partners for SWI/SNF complexes. CUT&RUN profiling demonstrates SWI/SNF targeting enrichment at AP-1 bound loci, as well as SWI/SNF-AP-1 cooperation in chromatin targeting. HiChIP reveals AP-1-SWI/SNF-dependent restructuring of the three-dimensional promoter-enhancer architecture and generation of enhancer hubs. Through interrogation of the SWI/SNF-AP-1 interaction, we demonstrate an SWI/SNF dependency on AP-1-mediated chromatin localization. We propose that pioneer factors, such as AP-1, bind and target SWI/SNF to inactive chromatin, where it restructures the genomic landscape into an active state through epigenetic rewiring spanning multiple dimensions.
Assuntos
Cromatina , Fator de Transcrição AP-1 , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Nucleares/metabolismo , Regiões Promotoras GenéticasRESUMO
Supermacroporous agarose/chitosan composite monolithic (AC CM) cryogels were prepared for affinity purification of the major egg white glycoproteins, ovalbumin (OVA), and ovotransferrin (OVT). The supermacroporous AC CM cryogels were produced by cryocopolymerization of agarose/chitosan blend solutions using glutaraldehyde as the cross-linker. The 3-aminophenlyboronic acid ligand was immobilized by covalent binding to epoxy-group-coupled supermacroporous AC CM cryogels. The microstructure morphologies of these cryogels were analyzed by scanning electron microscopy. The supermacroporous AC CM cryogels contained a continuous interpenetrating polymer network matrix with interconnected pores of 10-100 µm in size. The composite cryogels offered high mechanical stability and had specific recognition for glycoproteins. The maximum binding capacity of OVA adsorption from aqueous solutions was 55.6 mg/g. The matrix could be reused 11 times without significant loss in OVA adsorption capacity. The recovery yields of OVA and OVT from egg white were estimated to be 89 and 93%, respectively.
Assuntos
Cromatografia de Afinidade/métodos , Proteínas do Ovo/isolamento & purificação , Clara de Ovo/química , Glicoproteínas/isolamento & purificação , Adsorção , Animais , Galinhas , Quitosana/química , Cromatografia de Afinidade/instrumentação , Criogéis/química , Proteínas do Ovo/análise , Glicoproteínas/análise , Porosidade , Sefarose/químicaRESUMO
Melanoma is one of the most aggressive cancer types whose prognosis is determined by both the tumor cell-intrinsic and -extrinsic features as well as their interactions. In this study, we performed systematic and unbiased analysis using The Cancer Genome Atlas (TCGA) melanoma RNA-seq data and identified two gene signatures that captured the intrinsic and extrinsic features, respectively. Specifically, we selected genes that best reflected the expression signals from tumor cells and immune infiltrate cells. Then, we applied an AutoEncoder-based method to decompose the expression of these genes into a small number of representative nodes. Many of these nodes were found to be significantly associated with patient prognosis. From them, we selected two most prognostic nodes and defined a tumor-intrinsic (TI) signature and a tumor-extrinsic (TE) signature. Pathway analysis confirmed that the TE signature recapitulated cytotoxic immune cell related pathways while the TI signature reflected MYC pathway activity. We leveraged these two signatures to investigate six independent melanoma microarray datasets and found that they were able to predict the prognosis of patients under standard care. Furthermore, we showed that the TE signature was also positively associated with patients' response to immunotherapies, including tumor vaccine therapy and checkpoint blockade immunotherapy. This study developed a novel computational framework to capture the tumor-intrinsic and -extrinsic features and identified robust prognostic and predictive biomarkers in melanoma.
RESUMO
c-MYC (MYC) is deregulated in more than 50% of all cancers. While MYC amplification is the most common MYC-deregulating event, many other alterations can increase MYC activity. We thus systematically investigated MYC pathway activity across different tumor types. Using a logistic regression framework, we established tumor type-specific, transcriptomic-based MYC activity scores that can accurately capture MYC activity. We show that MYC activity scores reflect a variety of MYC-regulating mechanisms, including MYCL and/or MYCN amplification, MYC promoter methylation, MYC mRNA expression, lncRNA PVT1 expression, MYC mutations, and viral integrations near the MYC locus. Our MYC activity score incorporates all of these mechanisms, resulting in better prognostic predictions compared with MYC amplification status, MYC promoter methylation, and MYC mRNA expression in several cancer types. In addition, we show that tumor proliferation and immune evasion are likely contributors to this reduction in survival. Finally, we developed a MYC activity signature for liquid tumors in which MYC translocation is commonly observed, suggesting that our approach can be applied to different types of genomic alterations. In conclusion, we developed a MYC activity score that captures MYC pathway activity and is clinically relevant. IMPLICATIONS: By using cancer type-specific MYC activity profiles, we were able to assess MYC activity across many more tumor types than previously investigated. The range of different MYC-related alterations captured by our MYC activity score can be used to facilitate the application of future MYC inhibitors and aid physicians to preselect patients for targeted therapy.
Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Amplificação de Genes , Perfilação da Expressão Gênica , Genômica , Humanos , Modelos Genéticos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Análise de SobrevidaRESUMO
Background: Neoantigens are presented on the cancer cell surface by peptide-restricted human leukocyte antigen (HLA) proteins and can subsequently activate cognate T cells. It has been hypothesized that the observed somatic mutations in tumors are shaped by immunosurveillance. Methods: We investigated all somatic mutations identified in The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) samples. By applying a computational algorithm, we calculated the binding affinity of the resulting neo-peptides and their corresponding wild-type peptides with the major histocompatibility complex (MHC) Class I complex. We then examined the relationship between binding affinity alterations and mutation frequency. Results: Our results show that neoantigens derived from recurrent mutations tend to have lower binding affinities with the MHC Class I complex compared to peptides from non-recurrent mutations. Tumor samples harboring recurrent SKCM mutations exhibited lower immune infiltration levels, indicating a relatively colder immune microenvironment. Conclusions: These results suggested that the occurrences of somatic mutations in melanoma have been shaped by immunosurveillance. Mutations that lead to neoantigens with high MHC class I binding affinity are more likely to be eliminated and thus are less likely to be present in tumors.
Assuntos
Vigilância Imunológica/imunologia , Melanoma/imunologia , Mutação/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia/métodos , Taxa de Mutação , Peptídeos/imunologia , Microambiente Tumoral/imunologia , Melanoma Maligno CutâneoRESUMO
While T-cell responses to cancer immunotherapy have been avidly studied, long-lived memory has been poorly characterized. In a cohort of metastatic melanoma survivors with exceptional responses to immunotherapy, we probed memory CD8+ T-cell responses across tissues, and across several years. Single-cell RNA sequencing revealed three subsets of resident memory T (TRM) cells shared between tumors and distant vitiligo-affected skin. Paired T-cell receptor sequencing further identified clonotypes in tumors that co-existed as TRM in skin and as effector memory T (TEM) cells in blood. Clonotypes that dispersed throughout tumor, skin, and blood preferentially expressed a IFNG / TNF-high signature, which had a strong prognostic value for melanoma patients. Remarkably, clonotypes from tumors were found in patient skin and blood up to nine years later, with skin maintaining the most focused tumor-associated clonal repertoire. These studies reveal that cancer survivors can maintain durable memory as functional, broadly-distributed TRM and TEM compartments.
Assuntos
Melanoma , Células T de Memória , Linfócitos T CD8-Positivos/patologia , Humanos , Fatores Imunológicos , Memória Imunológica , Imunoterapia , Melanoma/terapiaRESUMO
Neoadjuvant chemotherapy is the current standard of care for large, advanced, and/or inoperable tumors, including triple-negative breast cancer. Although the clinical benefits of neoadjuvant chemotherapy have been illustrated through numerous clinical trials, more than half of the patients do not experience therapeutic benefit and needlessly suffer from side effects. Currently, no clinically applicable biomarkers are available for predicting neoadjuvant chemotherapy response in triple-negative breast cancer; the discovery of such a predictive biomarker or marker profile is an unmet need. In this study, we introduce a generic computational framework to calculate a response-probability score (RPS), based on patient transcriptomic profiles, to predict their response to neoadjuvant chemotherapy. We first validated this framework in ER-positive breast cancer patients and showed that it predicted neoadjuvant chemotherapy response with equal performance to several clinically used gene signatures, including Oncotype DX and MammaPrint. Then, we applied this framework to triple-negative breast cancer data and, for each patient, we calculated a response probability score (TNBC-RPS). Our results indicate that the TNBC-RPS achieved the highest accuracy for predicting neoadjuvant chemotherapy response compared to previously proposed 143 gene signatures. When combined with additional clinical factors, the TNBC-RPS achieved a high prediction accuracy for triple-negative breast cancer patients, which was comparable to the prediction accuracy of Oncotype DX and MammaPrint in ER-positive patients. In conclusion, the TNBC-RPS accurately predicts neoadjuvant chemotherapy response in triple-negative breast cancer patients and has the potential to be clinically used to aid physicians in stratifying patients for more effective neoadjuvant chemotherapy.
Assuntos
Terapia Neoadjuvante/métodos , Transcriptoma , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/química , Quimioterapia Adjuvante/métodos , Feminino , Humanos , Probabilidade , Receptores de Estrogênio , Resultado do Tratamento , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Neuroblastoma (NB) is a heterogeneous disease with respect to genomic abnormalities and clinical behaviors. Despite recent advances in our understanding of the association between the genetic aberrations and clinical features, it remains one of the major challenges to predict prognosis and stratify patients for determining personalized therapy in this disease. The aim of this study was to develop an effective prognosis prediction model for NB patients. METHODS: We integrated diverse computational analyses to define gene signatures that reflect MYCN activity and chromosomal aberrations including deletion of chromosome 1p (Chr1p_del) and chromosome 11q (Chr11q_del) as well as chromosome 11q whole loss (Chr11q_wls). We evaluated the prognostic and predictive values of these signatures in seven NB gene expression datasets (the number of samples ranges from 94 to 498, with a total of 2120) generated from both RNA sequencing and microarray platforms. RESULTS: MYCN signature was a more effective prognostic marker than MYCN amplification status and MYCN expression. Similarly, the Chr1p_del score was more prognostic than Chr1p status. The activity scores of MYCN, Chr1p_del and Chr11q_del were associated with poor prognosis, while the Chr11q_wls score was linked to good outcome. We integrated the activity scores of MYCN, Chr1p_del, Chr11q_del, and Chr11q_wls and clinical variables into an integrative prognostic model, which displayed significant performance over the clinical variables or each genomic aberration alone. CONCLUSIONS: Our integrative gene signature model shows a significantly improved forecast performance with prognostic and predictive information, and thereby can be served as a biomarker to stratify NB patients for prognosis evaluation and surveillance programs.
Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 1 , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Adolescente , Criança , Pré-Escolar , Feminino , Amplificação de Genes , Genômica , Humanos , Lactente , Recém-Nascido , Masculino , Neuroblastoma/mortalidade , PrognósticoRESUMO
In recent years, the success of immunotherapy targeting immunoregulatory receptors (immune checkpoints) in cancer have generated enthusiastic support to target these receptors in a wide range of other immune related diseases. While the overwhelming focus has been on blockade of these inhibitory pathways to augment immunity, agonistic triggering via these receptors offers the promise of dampening pathogenic inflammatory responses. V-domain Ig suppressor of T cell activation (VISTA) has emerged as an immunoregulatory receptor with constitutive expression on both the T cell and myeloid compartments, and whose agonistic targeting has proven a unique avenue relative to other checkpoint pathways to suppress pathologies mediated by the innate arm of the immune system. VISTA agonistic targeting profoundly changes the phenotype of human monocytes towards an anti-inflammatory cell state, as highlighted by striking suppression of the canonical markers CD14 and Fcγr3a (CD16), and the almost complete suppression of both the interferon I (IFN-I) and antigen presentation pathways. The insights from these very recent studies highlight the impact of VISTA agonistic targeting of myeloid cells, and its potential therapeutic implications in the settings of hyperinflammatory responses such as cytokine storms, driven by dysregulated immune responses to viral infections (with a focus on COVID-19) and autoimmune diseases. Collectively, these findings suggest that the VISTA pathway plays a conserved, non-redundant role in myeloid cell function.
Assuntos
Antígenos B7/agonistas , COVID-19/patologia , Síndrome da Liberação de Citocina/prevenção & controle , Células Mieloides/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos B7/antagonistas & inibidores , Antígenos B7/imunologia , Linfócitos T CD4-Positivos/imunologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Imunoterapia , Interferon Tipo I/antagonistas & inibidores , Receptores de Lipopolissacarídeos/antagonistas & inibidores , Ativação Linfocitária/imunologia , Camundongos , Receptores de IgG/antagonistas & inibidores , SARS-CoV-2/imunologiaRESUMO
Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.