Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 37(19-20): 865-882, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852796

RESUMO

The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.


Assuntos
Histona Acetiltransferases , Lisina , Animais , Humanos , Camundongos , Acetilação , Adesão Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Histona Acetiltransferases/metabolismo , Lisina/metabolismo
2.
Nature ; 588(7838): 419-423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328665

RESUMO

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

3.
Nat Mater ; 23(1): 58-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857889

RESUMO

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state.

4.
Stem Cells ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177656

RESUMO

Teeth are comprised of epithelial and mesenchymal cells, and regenerative teeth rely on the regeneration of both cell types. Transcription factors play a pivotal role in cell fate determination. In this study, we establish fluorescence models based on transcription factors to monitor and analyze dental epithelial cells. Using Pitx2-P2A-copGFP mice, we observe that Pitx2+ epithelial cells, when combined with E14.5 dental mesenchymal cells, are sufficient for the reconstitution of teeth. Induced-Pitx2+ cells, directly isolated from the embryoid body that employs the Pitx2-GFP embryonic stem cell line, exhibit the capacity to differentiate into ameloblasts and develop into teeth when combined with dental mesenchymal cells. The regenerated teeth exhibit a complete structure, including dental pulp, dentin, enamel, and periodontal ligaments. Subsequent exploration via RNA-seq reveals that induced-Pitx2+ cells exhibit enrichment in genes associated with FGF receptors and WNT ligands compared with induced-Pitx2- cells. Our results indicate that both primary Pitx2+ and induced Pitx2+ cells possess the capability to differentiate into enamel-secreting ameloblasts and grow into teeth when combined with dental mesenchymal cells.

5.
Nano Lett ; 24(23): 6974-6980, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829211

RESUMO

The plateau phase transition in quantum anomalous Hall (QAH) insulators corresponds to a quantum state wherein a single magnetic domain gives way to multiple domains and then reconverges back to a single magnetic domain. The layer structure of the sample provides an external knob for adjusting the Chern number C of the QAH insulators. Here, we employ molecular beam epitaxy to grow magnetic topological insulator multilayers and realize the magnetic field-driven plateau phase transition between two QAH states with odd Chern number change ΔC. We find that critical exponents extracted for the plateau phase transitions with ΔC = 1 and ΔC = 3 in QAH insulators are nearly identical. We construct a four-layer Chalker-Coddington network model to understand the consistent critical exponents for the plateau phase transitions with ΔC = 1 and ΔC = 3. This work will motivate further investigations into the critical behaviors of plateau phase transitions with different ΔC in QAH insulators.

6.
Nano Lett ; 24(26): 7962-7971, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885199

RESUMO

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures.

7.
Cancer Immunol Immunother ; 73(2): 33, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280081

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells for refractory or relapsed (r/r) B cell no-Hodgkin lymphoma (NHL) patients have shown promising clinical effectiveness. However, the factors impacting the clinical response of CAR-T therapy have not been fully elucidated. We here investigate the independent influencing factors of the efficacy of CD19 CAR-T cell infusion in the treatment of r/r B-NHL and to establish an early prediction model. METHODS: A total of 43 r/r B-NHL patients were enrolled in this retrospective study. The patients' general data were recorded, and the primary endpoint is the patients' treatment response. The independent factors of complete remission (CR) and partial remission (PR) were investigated by univariate and binary logistic regression analysis, and the prediction model of the probability of CR was constructed according to the determined independent factors. Receiver operating characteristic (ROC) and calibration plot were used to assess the discrimination and calibration of the established model. Furthermore, we collected 15 participators to validate the model. RESULTS: Univariate analysis and binary logistic regression analysis of 43 patients showed that the ratio of central memory T cell (Tcm) and naïve T cell (Tn) in cytotoxic T cells (Tc) was an independent risk factor for response to CD19 CAR-T cell therapy in r/r B-NHL. On this basis, the area under the curve (AUC) of Tcm in the Tc and Tn in the Tc nomogram model was 0.914 (95%CI 0.832-0.996), the sensitivity was 83%, and the specificity was 74.2%, which had excellent predictive value. We did not found the difference of the progression-free survival (PFS). CONCLUSIONS: The ratio of Tcm and Tn in Tc was found to be able to predict the treatment response of CD19 CAR-T cells in r/r B-NHL. We have established a nomogram model for the assessment of the CD19 CAR-T therapy response presented high specificity and sensitivity.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Nomogramas , Estudos Retrospectivos , Imunoterapia Adotiva , Subpopulações de Linfócitos T , Antígenos CD19
8.
Small ; 20(21): e2308247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174612

RESUMO

Iron oxide nanoparticles are a kind of important biomedical nanomaterials. Although their industrial-scale production can be realized by the conventional coprecipitation method, the controllability of their size and morphology remains a huge challenge. In this study, a kind of synthetic polypeptide Mms6-28 which mimics the magnetosome protein Mms6 is used for the bioinspired synthesis of Fe3O4 nanoparticles (NPs). Magnetosomes-like Fe3O4 NPs with uniform size, cubooctahedral shape, and smooth crystal surfaces are synthesized via a partial oxidation process. The Mms6-28 polypeptides play an important role by binding with iron ions and forming nucleation templates and are also preferably attached to the [100] and [111] crystal planes to induce the formation of uniform cubooctahedral Fe3O4 NPs. The continuous release and oxidation of Fe2+ from pre-formed Fe2+-rich precursors within the Mms6-28-based template make the reaction much controllable. The study affords new insights into the bioinspired- and bio-synthesis mechanism of magnetosomes.


Assuntos
Magnetossomos , Magnetossomos/química , Nanopartículas de Magnetita/química , Oxirredução
9.
Chembiochem ; 25(20): e202400345, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39087277

RESUMO

Converting fatty acids into specialty chemicals is sustainable but hindered by the low efficiency and thermal instability of current oleic acid hydratases, along with mass transfer limitations in emulsion reactions. This study introduces an optimized continuous flow micro-reactor (CFMR) that efficiently transforms oleic acid at low (15 g L-1) and high (50 g L-1) concentrations, improving reaction efficiency and overcoming key conversion barriers. The first CFMR model showed reaction speeds surpassing traditional batch stirred tank reactors (BSTR). Optimizations were performed on three key components: liquid storage, mixer, and reaction section of the CFMR, with each round's best conditions carried into the next. This achieved a space-time yield of 597 g L-1 d-1 at a 15 g L-1 oleic acid load. To further enhance the yield, we optimized the emulsifier system to solve incomplete emulsification and developed a two-component feed microreactor (TCFMR) that addressed mass transfer limitations caused by the product at high substrate loads, reaching a 91 % conversion of 50 g L-1 oleic acid in 30 minutes, with a space-time yield of 2312 g L-1 d-1. These advancements represent significant progress in utilizing fatty acids and advancing sustainable chemical synthesis.


Assuntos
Reatores Biológicos , Ácido Oleico , Ácidos Esteáricos , Ácido Oleico/química , Ácidos Esteáricos/química
10.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
11.
J Transl Med ; 22(1): 888, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358720

RESUMO

BACKGROUNDS: The incidence of extramedullary diseases (EMDs) in patients diagnosed with acute myeloid leukemia (AML) is approximately 10-20%. These patients exhibit a significantly distinct etiology, therapeutic response, and prognosis compared to patients without EMDs. CLL1 CAR-T therapy has been demonstrated satisfactory efficacy and safety in the treatment of refractory and relapsed AML patients. However, concerns have been raised regarding the potential impact of extramedullary niduses on the effectiveness of CLL1 CAR-T therapy. METHODS: A total of 47 patients were enrolled in this study, including 27 patients with isolated AML tumor bone marrow infiltration and 20 patients with both extramedullary and bone marrow infiltration of AML. CLL1 CAR-T cells were manufactured and subjected to rigorous quality control in the hematology laboratory of Tianjin First Central Hospital. The efficacy and adverse reactions were assessed following CAR-T cell infusion, while expansion of CAR-T cells, levels of cytokines releasing, and other indicators were closely monitored. RESULTS: Among the 20 patients with EMDs and the 27 individuals without EMDs, complete remission in bone marrow was achieved by 65.00% and 81.48% of patients, respectively. Meanwhile, among the patients with EMDs, 55.00% achieved complete remission while 10.00% achieved partial remission when assessing the efficacy of CLL1 CAR-T cells against extramedullary niduses. Although the overall survival, progression-free survival, and duration of remission period appeared to be shorter for patients with EMDs compared to those without EMDs, this difference did not reach statistical significance. The incidence rates of complications were comparable between both groups. Meanwhile, there were no significant differences observed in the levels of CAR-T cell expansion and accompanying cytokines release between patients with and without EMDs. CONCLUSIONS: Our study findings have demonstrated the efficacy of CLL1 CAR-T therapy in the treatment of AML patients with EMDs, while also indicating manageable occurrence rates of complications within a tolerable range. The CLL1 CAR-T therapy, serving as an ideal strategy for AML patients irrespective of the presence of EMDs, effectively ameliorates the conditions of AML patients and provides them with an opportunity to undergo curative hematopoietic stem cell transplantation while significantly enhancing their prognosis.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Humanos , Masculino , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Feminino , Pessoa de Meia-Idade , Adulto , Imunoterapia Adotiva/efeitos adversos , Resultado do Tratamento , Idoso , Adulto Jovem , Medula Óssea/patologia , Receptores de Antígenos Quiméricos , Adolescente
12.
Nat Mater ; 22(5): 570-575, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781950

RESUMO

The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes1,2. The development of a scalable material platform is key to the realization of topological quantum computing3,4. Here we report on the growth and properties of high-quality (Bi,Sb)2Te3/graphene/gallium heterostructures. Our synthetic approach enables atomically sharp layers at both hetero-interfaces, which in turn promotes proximity-induced superconductivity that originates in the gallium film. A lithography-free, van der Waals tunnel junction is developed to perform transport tunnelling spectroscopy. We find a robust, proximity-induced superconducting gap formed in the Dirac surface states in 5-10 quintuple-layer (Bi,Sb)2Te3/graphene/gallium heterostructures. The presence of a single Abrikosov vortex, where the Majorana zero modes are expected to reside, manifests in discrete conductance changes. The present material platform opens up opportunities for understanding and harnessing the application potential of topological superconductivity.

13.
BMC Microbiol ; 24(1): 370, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342090

RESUMO

BACKGROUND: Oenococcus oeni is a commercial wine-fermenting bacterial strain, owing to its high efficiency of malolactic fermentation and stress tolerance. The present study explored the function of key genes in O. oeni to enhance stress resistance by heterologous expression of these genes in another species. RESULTS: The orf00404 gene that encodes a two-component signal transduction response regulator in O. oeni was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The expression of orf00404 significantly enhanced the growth rate of the recombinant strain under acid stress. At 60 h, 72 h, and 108 h of culture at pH 4.0, the recombinant strain had 1562, 641, and 748 differentially expressed genes compared to the control strain, respectively. At all three time points, 20 genes were upregulated in the recombinant strain, including the lamA-D operon-coding genes of the quorum-sensing two component signal transduction system and the spx5 RNA polymerase-binding protein coding gene, which may help adaptation to acid stress. In addition, 47 genes were downregulated in the recombinant strain at all three time points, including the hsp1 heat shock protein-coding gene, the trxA1 thioredoxin-coding gene, and the dinP, mutY, umuC, and uvrB DNA damage repair-related protein-coding genes, potentially indicating that the recombinant strain was less susceptible to stress and had less DNA damage than the control strain in acid stress conditions. The recombinant strain had higher membrane fluidity, permeability, and integrity at an early stage of logarithmic growth (72 h), suggesting that it had a more complete and active cell membrane state at this stage. The intracellular ATP content was significantly reduced in the recombinant strain at the beginning of logarithmic growth (60 h), implying that the recombinant strain consumed more energy at this stage to resist acid stress and growth. CONCLUSIONS: These results indicated that the recombinant strain enhances acid stress tolerance by regulating a gene expression pattern, increasing ATP consumption, and enhancing cell membrane fluidity, membrane permeability, and membrane integrity at specific growth stages. Thus, the recombinant strain may have potential application in the microbial biotechnology industry.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Oenococcus , Transdução de Sinais , Estresse Fisiológico , Oenococcus/genética , Oenococcus/metabolismo , Estresse Fisiológico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Ácidos/metabolismo , Concentração de Íons de Hidrogênio , Vinho/microbiologia , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Percepção de Quorum/genética
14.
Phys Rev Lett ; 132(6): 066604, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394580

RESUMO

We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi_{2}Te_{4} thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi_{2}Te_{4} films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi_{2}Te_{4} films.

15.
Ann Hematol ; 103(3): 969-980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214708

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy targeting CLL1 has been considered a potent weapon for patients with acute myeloid leukemia (AML). This study aims to evaluate the efficacy and toxicity of CLL1 CAR-T cell therapy in a larger cohort, with particular attention to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Among the 32 patients assessed for efficacy, complete remission occurred in 71.88% (23/32) of cases and undetectable minimal residual disease in 14 patients. The CRS developed in all patients, with 8 individuals experiencing ICANS. Severe CRS and ICANS were observed in 11 and 2 patients, respectively. Furthermore, the Endothelial Activation and Stress Index (EASIX) and its derivatives measured before and after CLL1 CAR-T cell infusion were employed for predicting the severe complications. Significant differences were observed in EASIX scores on the day before lymphodepletion (Day BL, P = 0.023), -1 (P < 0.001), +1 (P < 0.001), and +3(P = 0.014); sEASIX scores on Day BL (P = 0.007), -1 (P < 0.001), +1 (P < 0.001), and +3 (P < 0.001); and mEASIX score on Day -1 (P = 0.004) between patients with mild and severe CRS/ICANS. Additionally, there was a significant difference in mEASIX scores between responders and non-responders on Day BL (P = 0.004) and Day -1 (P = 0.044). Our findings indicate that pre- and post-infusion assessments of EASIX/mEASIX/sEASIX scores serve as reliable prognostic indicators for severe CRS/ICANS and treatment response following CLL1 CAR-T cell therapy, which can assist physicians in implementing preemptive treatment strategies for potential severe complications and screening patients who are suitable candidates for CLL1 CAR-T cell therapy. EASIX/mEASIX/sEASIX scores serve as reliable prognostic indicators for severe CRS/ICANS following CLL1 CAR-T cell therapy. The preinfusion mEASIX scores of CLL1 CAR-T cells can effectively predict treatment response.


Assuntos
Leucemia Mieloide Aguda , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Terapia Baseada em Transplante de Células e Tecidos
16.
Br J Nutr ; 131(4): 622-629, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772623

RESUMO

Systolic blood pressure (SBP) is significantly associated with body composition in children and adolescents. However, which one of the components of body composition is the dominant contributor to SBP in children and adolescents remains unclear. We, therefore, aimed to determine the dominant contributor to SBP among components of body composition in a large cohort of American children and adolescents derived from the National Health and Nutrition Examination Survey with cross-sectional analysis. In total, 13 618 children and adolescents (median age 13 years; 6107 girls) with available data on whole-body dual-emission X-ray absorptiometry measurements were included. Multiple linear regression showed that SBP was associated with higher total fat-free mass in boys (ß = 0·49, P < 0·001) and girls (ß = 0·47, P < 0·001) and with higher total fat mass only in boys (ß = 0·12, P < 0·001) after adjustment for covariates. When taking fat distribution into consideration, SBP was associated with higher trunk fat mass (boys: ß = 0·28, P < 0·001; girls: ß = 0·15, P < 0·001) but negatively associated with leg fat mass (Boys: ß = -0·14, P < 0·001; Girls: ß = -0·11, P < 0·001), in both boys and girls. Dominance analysis showed that total fat-free mass was the dominant contributor to SBP (boys: 49 %; girls: 55·3 %), followed by trunk fat mass (boys: 32·1 %; girls: 26·9 %); leg fat mass contributed the least to SBP in boys (18·9 %) and girls (17·8 %). Our findings indicated that total fat-free mass was not only associated with SBP but also the most dominant contributor to SBP variation in American children and adolescents.


Assuntos
Composição Corporal , Masculino , Criança , Feminino , Humanos , Adolescente , Pressão Sanguínea/fisiologia , Índice de Massa Corporal , Estudos Transversais , Inquéritos Nutricionais
17.
Analyst ; 149(10): 2796-2800, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38669149

RESUMO

A near-infrared fluorescent nanoprobe consisting of Nile blue-capped ZIF-90 is first proposed for real-time imaging of mitochondrial ATP. Owing to the strong binding of ATP with Zn2+, the structure of the probe is disrupted, leading to the release of fluorescent NB.


Assuntos
Trifosfato de Adenosina , Corantes Fluorescentes , Mitocôndrias , Oxazinas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Oxazinas/química , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Células HeLa , Raios Infravermelhos , Imagem Óptica/métodos , Nanopartículas/química
18.
Environ Sci Technol ; 58(11): 5014-5023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437169

RESUMO

Estimates of the land area occupied by wind energy differ by orders of magnitude due to data scarcity and inconsistent methodology. We developed a method that combines machine learning-based imagery analysis and geographic information systems and examined the land area of 318 wind farms (15,871 turbines) in the U.S. portion of the Western Interconnection. We found that prior land use and human modification in the project area are critical for land-use efficiency and land transformation of wind projects. Projects developed in areas with little human modification have a land-use efficiency of 63.8 ± 8.9 W/m2 (mean ±95% confidence interval) and a land transformation of 0.24 ± 0.07 m2/MWh, while values for projects in areas with high human modification are 447 ± 49.4 W/m2 and 0.05 ± 0.01 m2/MWh, respectively. We show that land resources for wind can be quantified consistently with our replicable method, a method that obviates >99% of the workload using machine learning. To quantify the peripheral impact of a turbine, buffered geometry can be used as a proxy for measuring land resources and metrics when a large enough impact radius is assumed (e.g., >4 times the rotor diameter). Our analysis provides a necessary first step toward regionalized impact assessment and improved comparisons of energy alternatives.


Assuntos
Fontes Geradoras de Energia , Vento , Humanos , Fazendas , Fenômenos Físicos
19.
J Periodontal Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991951

RESUMO

Periodontitis is widely acknowledged as the most prevalent type of oral inflammation, arising from the dynamic interplay between oral pathogens and the host's immune responses. It is also recognized as a contributing factor to various systemic diseases. Dysbiosis of the oral microbiota can significantly alter the composition and diversity of the gut microbiota. Researchers have delved into the links between periodontitis and systemic diseases through the "oral-gut" axis. However, whether the associations between periodontitis and the gut microbiota are simply correlative or driven by causative mechanistic interactions remains uncertain. This review investigates how dysbiosis of the gut microbiota impacts periodontitis, drawing on existing preclinical and clinical data. This study highlights potential mechanisms of this interaction, including alterations in subgingival microbiota, oral mucosal barrier function, neutrophil activity, and abnormal T-cell recycling, and offers new perspectives for managing periodontitis, especially in cases linked to systemic diseases.

20.
Mol Biol Rep ; 51(1): 217, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281217

RESUMO

BACKGROUND: In lower vertebrates like fish, the inner ear and lateral line hair cells (HCs) can regenerate after being damaged by proliferation/differentiation of supporting cells (SCs). However, the HCs of mouse cochlear could only regenerate within one to two weeks after birth but not for adults. METHODS AND RESULTS: To better understand the molecular foundations, we collected several public single-cell RNA sequencing (scRNAseq) data of mouse cochleae from E14 to P33 and extracted the prosensory and supporting cells specifically. Gene Set Enrichment Analysis (GSEA) results revealed a down-regulation of genes in Notch signaling pathway during postnatal stages (P7 and P33). We also identified 107 time-course co-expression genes correlated with developmental stage and predicated that EZH2 and KLF15 may be the key transcriptional regulators for these genes. Expressions of candidate target genes of EZH2 and KLF15 were also found in supporting cells of the auditory epithelia in chick and the neuromasts in zebrafish. Furthermore, inhibiting EZH2 suppressed regeneration of hair cells in zebrafish neuromasts and altered expressions of some developmental stage correlated genes. CONCLUSIONS: Our results extended the understanding for molecular basis of hair cell regeneration ability and revealed the potential role of Ezh2 in it.


Assuntos
Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Proliferação de Células/genética , Células Ciliadas Auditivas/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA