Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 940-951, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882623

RESUMO

More and more patients with advanced colorectal cancer (CRC) have benefited from surgical resection or ablation following neoadjuvant chemoradiotherapy (nCRT), but nCRT may be ineffective and have potential risks to some patients. Therefore, it is necessary to discover effective biomarkers for predicting the nCRT efficacy in CRC patients. Chromokinesin Kif4A plays a critical role in mitosis, DNA damage repair and tumorigenesis, but its relationship with nCRT efficacy in advanced CRC remains unclear. Here, we find that Kif4A expression in pretreated tumor tissue is positively correlated with poorer tumor regression after receiving nCRT ( P=0.005). Knockdown of endogenous Kif4A causes an increased sensitivity of CRC cells to chemotherapeutic drugs 5-fluorouracil (5-FU) and Cisplatin (DDP), while overexpression of Kif4A enhances resistance of CRC cells to the chemotherapeutic drugs. Furthermore, depending on its motor domain and tail domain, Kif4A regulates DNA damage response (DDR) induced by 5-FU or DDP treatment in CRC cells. In conclusion, we demonstrate that Kif4A may be a potential independent biomarker for predicting the nCRT efficacy in advanced CRC patients, and Kif4A regulates chemosensitivity of CRC cells through controlling DDR.


Assuntos
Neoplasias Colorretais , Terapia Neoadjuvante , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Fluoruracila/farmacologia , Humanos , Cinesinas/genética
2.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 304-313, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514224

RESUMO

Neoadjuvant therapy (NAT) for advanced colorectal cancer (ACRC) is a kind of well-evidenced therapy, yet a portion of ACRC patients have poor therapeutic response. To date, no suitable biomarker used for assessing NAT efficacy has been reported. Here, we collect 72 colonoscopy biopsy tissue specimens from ACRC patients before undergoing NAT and investigate the relationship between HOXA13 expression and NAT efficacy. The results show that HOXA13 expression in pretreated tumor specimens is negatively associated with tumor regression ( P<0.001) and progression-free survival ( P<0.05) in ACRC patients who underwent NAT. Silencing of HOXA13 or its regulator HOTTIP significantly enhances the chemosensitivity of colorectal cancer (CRC) cells, leading to an increase in cell apoptosis and the DNA damage response (DDR) to chemotherapeutic drug treatment. In contrast, HOXA13 overexpression causes a significant increase in chemoresistance in CRC cells. In summary, we find that the HOTTIP/HOXA13 axis is involved in regulating chemotherapeutic sensitivity in CRC cells by modulating the DDR and that HOXA13 serves as a promising marker for NAT efficacy prediction in ACRC patients.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Terapia Neoadjuvante , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Biomarcadores
3.
Commun Biol ; 7(1): 18, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177713

RESUMO

Mitochondrial transcription termination factor 3 (MTERF3) negatively regulates mitochondrial DNA transcription. However, its role in hepatocellular carcinoma (HCC) progression remains elusive. Here, we investigate the expression and function of MTERF3 in HCC. MTERF3 is overexpressed in HCC tumor tissues and higher expression of MTERF3 positively correlates with poor overall survival of HCC patients. Knockdown of MTERF3 induces mitochondrial dysfunction, S-G2/M cell cycle arrest and apoptosis, resulting in cell proliferation inhibition. In contrast, overexpression of MTERF3 promotes cell cycle progression and cell proliferation. Mechanistically, mitochondrial dysfunction induced by MTERF3 knockdown promotes ROS accumulation, activating p38 MAPK signaling pathway to suppress HCC cell proliferation. In conclusion, ROS accumulation induced by MTERF3 knockdown inhibits HCC cell proliferation via p38 MAPK signaling pathway suggesting a promising target in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Mitocondriais , Proteínas Mitocondriais , Fatores de Transcrição , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Proteínas Mitocondriais/genética
4.
Cell Death Dis ; 14(2): 89, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750557

RESUMO

Ribosome biogenesis (RiBi) plays a pivotal role in carcinogenesis by regulating protein translation and stress response. Here, we find that RRP15, a nucleolar protein critical for RiBi and checkpoint control, is frequently upregulated in primary CRCs and higher RRP15 expression positively correlated with TNM stage (P < 0.0001) and poor survival of CRC patients (P = 0.0011). Functionally, silencing RRP15 induces ribosome stress, cell cycle arrest, and apoptosis, resulting in suppression of cell proliferation and metastasis. Overexpression of RRP15 promotes cell proliferation and metastasis. Mechanistically, ribosome stress induced by RRP15 deficiency facilitates translation of TOP mRNA LZTS2 (Leucine zipper tumor suppressor 2), leading to the nuclear export and degradation of ß-catenin to suppress Wnt/ß-catenin signaling in CRC. In conclusion, ribosome stress induced by RRP15 deficiency inhibits CRC cell proliferation and metastasis via suppressing the Wnt/ß-catenin pathway, suggesting a potential new target in high-RiBi CRC patients.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Linhagem Celular Tumoral , beta Catenina/metabolismo , Neoplasias Colorretais/patologia , Proliferação de Células/genética , Ribossomos/metabolismo , Via de Sinalização Wnt/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
J Mol Endocrinol ; 70(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356262

RESUMO

The pathogenesis of nonalcoholic steatohepatitis (NASH), a severe stage of nonalcoholic fatty liver disease, is complex and implicates multiple cell interactions. However, therapies for NASH that target multiple cell interactions are still lacking. Melatonin (MEL) alleviates NASH with mechanisms not yet fully understood. Thus, we herein investigate the effects of MEL on key cell types involved in NASH, including hepatocytes, macrophages, and stellate cells. In a mouse NASH model with feeding of a methionine and choline-deficient (MCD) diet, MEL administration suppressed lipid accumulation and peroxidation, improved insulin sensitivity, and attenuated inflammation and fibrogenesis in the liver. Specifically, MEL reduced proinflammatory cytokine expression and inflammatory signal activation and attenuated CD11C+CD206- M1-like macrophage polarization in the liver of NASH mice. The reduction of proinflammatory response by MEL was also observed in the lipopolysaccharide-stimulated Raw264.7 cells. Additionally, MEL increased liver fatty acid ß-oxidation, leading to reduced lipid accumulation, and restored the oleate-loaded primary hepatocytes. Finally, MEL attenuated hepatic stellate cell (HSC) activation and fibrogenesis in the liver of MCD-fed mice and in LX-2 human HSCs. In conclusion, MEL acts on multiple cell types in the liver to mitigate NASH-associated phenotypes, supporting MEL or its analog as potential treatment for NASH.


Assuntos
Melatonina , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Dieta , Modelos Animais de Doenças , Colina/metabolismo , Colina/farmacologia , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA